Instability of Difierential Equations with Piecewise Constant Argument of Generalized Type

Iguer Luis Domini dos Santos

Resumo


The article establishes a result of Lyapunov instability to diferential equations with
piecewise constant argument of generalized type (EPCAG), through the qualitative study of solutions for EPCAG via functions of continuous time. Using the result established in the article, we study the instability of a logistic equation with piecewise constant argument of generalized type.


Palavras-chave


Nonlinear Diferential Equations; Piecewise Constant Argument of Generalized Type; Lyapunov Stability; Instability

Texto completo:

PDF (English)

Referências


M. U. Akhmet. Integral manifolds of diferential equations with piecewise constant argument of generalized type. In: Nonlinear Anal. 66.2 (2007), pp. 367383. doi: 10.1016/j.na. 2005.11.032.

M. U. Akhmet. Stability of diferential equations with piecewise constant arguments of generalized type. In: Nonlinear Anal. 68.4 (2008), pp. 794803. doi: 10 . 1016 / j . na . 2006.11.037.

M. U. Akhmet, D. Aru§aslan, and Ylmaz E. Method of Lyapunov functions for dierential equations with piecewise constant delay. In: J. Comput. Appl. Math. 235.16 (2011), pp. 45544560. doi: 10.1016/j.cam.2010.02.043.

M. S. Alwan, X. Liu, and W. C. Xie. Comparison principle and stability of diferential equations with piecewise constant arguments. In: J. Franklin Inst. 350.2 (2013), pp. 211 230. doi: 10.1016/j.jfranklin.2012.08.016.

D. Aru§aslan and L. Güzel. Stability of the logistic population model with generalized piecewise constant delays. In: Adv. Dierence Equ. 2015.173 (2015), p. 10. doi: 10 . 1186/s13662-015-0521-8. 6

Earl A. Coddington and Norman Levinson. Theory of ordinary dierential equations. New York: McGraw-Hill, 1955.

K. Gopalsamy and P. Liu. Persistence and global stability in a population model. In: J. Math. Anal. Appl. 224.1 (1998), pp. 5980. doi: 10.1006/jmaa.1998.5984.

W. Hahn. Stability of motion. Berlin: Springer, 1967.

E. L. Ince. Ordinary dierential equations. New York: Dover, 1956.

A. F. Ivanov. Global dynamics of a dierential equation with piecewise constant argument. In: Nonlinear Anal. 71.12 (2009), e2384e2389. doi: 10.1016/j.na.2009.05.030.

H. Li, Y. Muroya, and R. Yuan. A su cient condition for global asymptotic stability of a class of logistic equations with piecewise constant delay. In: Nonlinear Anal. Real World Appl. 10.1 (2009), pp. 244253. doi: 10.1016/j.nonrwa.2007.09.006.

Richard K. Miller and Anthony N. Michel. Ordinary dierential equations. New York: Academic Press, 1982.

F. Riesz and B. Sz.-Nagy. Functional analysis. New York: Frederick Ungar Publishing Co., 1955.

T. C. Sideris. Ordinary dierential equations and dynamical systems. Paris: Atlantis Press, 2013.

G. V. Smirnov. Introduction to the theory of derential inclusions. Providence: American Mathematical Society, 2002.

T. Yoshizawa. Stability theory by Liapunov's second method. Tokyo: The Mathematical Society of Japan, 1966.




DOI: https://doi.org/10.5540/03.2022.009.01.0264

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato