Quotient space of intervals


  • Gino Gustavo Maqui Huamán
  • Ulcilea Alves Severino Leal




Interval space, linear space of intervals, quotient space of intervals.


This article studies the quotient space of intervals, for this is defined an equivalence relation considering a symmetric difference, is obtained the quotient space of intervals where is defined a specific representative of the equivalence class, and an appropriated norm and metric is defined to proof that this space is a complete metric space.


Não há dados estatísticos.

Biografia do Autor

Gino Gustavo Maqui Huamán

Institute of Exact and Natural Sciences, Federal University of Pará, Brazil


Ulcilea Alves Severino Leal

Federal University of Triângulo Mineiro, Brazil


Sergey Mironovich Aseev. “Quasilinear operators and their application in the theory of multivalued mappings”. In: Trudy Matematicheskogo Instituta imeni VA Steklova 167 (1985), pp. 25–52.

Y. Chalco-Cano, H. Román-Flores, and M.D. Jiménez-Gamero. “Generalized derivative and π-derivative for set-valued functions”. In: Information Sciences 181.11 (2011), pp. 2177– 2188. doi: 10.1016/j.ins.2011.01.023. url: https://doi.org/10.1016%2Fj.ins.2011. 01.023.

Y. Chalco-Cano et al. “Algebra of generalized Hukuhara differentiable interval-valued functions: review and new properties”. In: Fuzzy Sets and Systems 375 (2019), pp. 53–69. doi: 10.1016/j.fss.2019.04.006. url: https://doi.org/10.1016%2Fj.fss.2019.04.006.

Yurilev Chalco-Cano, Heriberto Román-Flores, and María-Dolores Jiménez-Gamero. “Generalized derivative and π-derivative for set-valued functions”. In: Information Sciences 181.11 (2011), pp. 2177–2188.

Dug Hun Hong and Hae Young Do. “Additive decomposition of fuzzy quantities”. In: Information sciences 88.1-4 (1996), pp. 201–207.

Hans Rådström. “An embedding theorem for spaces of convex sets”. In: Proceedings of the American Mathematical Society 3.1 (1952), pp. 165–169.

Marko Antonio Rojas-Medar et al. “Fuzzy quasilinear spaces and applications”. In: Fuzzy Sets and Systems 152.2 (2005), pp. 173–190.

Luciano Stefanini and Barnabás Bede. “Generalized Hukuhara differentiability of intervalvalued functions and interval differential equations”. In: Nonlinear Analysis: Theory, Methods & Applications 71.3-4 (2009), pp. 1311–1328. doi: 10.1016/j.na.2008.12.005. url: https://doi.org/10.1016%2Fj.na.2008.12.005.

Elder J. Villamizar-Roa, Y. Chalco-Cano, and H. Roman-Flores. “Interval-valued functions in a quotient space”. In: 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC). IEEE, 2015. doi: 10.1109/nafips-wconsc.2015.7284182. url: https://doi.org/10.1109%2Fnafips-wconsc.2015.7284182.






Trabalhos Completos