A Constant Rank-type Constraint Qualification for Multi-Objective Continuous-Time Nonlinear Programming
DOI:
https://doi.org/10.5540/03.2023.010.01.0008Palavras-chave:
Continuous-time programming, Efficient solutions, Second order conditions, Constraint qualifications, Constant rank conditionResumo
The paper addresses multi-objective continuous-time nonlinear programming problems with equality and inequality constraints. It is obtained first and second-order necessary optimality conditions through a constant rank-type constraint qualification.
Downloads
Referências
Yair Censor. “Pareto optimality in multiobjective problems”. In: Applied Mathematics and Optimization 4.1 (1977), pp. 41–59. doi: https://doi.org/10.1007/BF01442131.
Vira Chankong and Yacov Y Haimes. Multiobjective decision making: theory and methodology. Courier Dover Publications, 2008.
A. Y. Dubovitskii and A. A. Milyutin. “Extremum problems in the presence of restrictions”. In: USSR Computational Mathematics and Mathematical Physics 5.3 (1965), pp. 1–80. doi: https://doi.org/10.1016/0041-5553(65)90148-5.
A. Jović. “New optimality conditions in vector continuous-time programming”. In: Yugosl. J. Oper. Res. 31.3 (2021), pp. 329–338. doi: https://doi.org/10.2298/yjor200415028j.
A. Jović and B. Marinković. “New optimality criteria for convex continuous-time problems of vector optimization”. In: Optimization (2021). To appear. doi: https://doi.org/10.1080/02331934.2021.1950152.
M. R. C. Monte and V. A. de Oliveira. A Constant rank constraint qualification in continuous-time nonlinear programming”. In: Set-Valued Var. Anal. 29.1 (2021), pp. 61–81. doi: https://doi.org/10.1007/s11228-020-00537-1.
M. R. C. Monte and V. A. de Oliveira. “Necessary conditions for continuous-time optimization under the Mangasarian-Fromovitz constraint qualification”. In: Optimization 69.4 (2020), pp. 777–798. doi: https://doi.org/10.1080/02331934.2019.1653294.
S. Nobakhtian and M. Pouryayevali. “Optimality criteria for nonsmooth continuous time problems of multiobjective optimization”. In: J. Optim. Theory Appl. 136.1 (2008), pp. 69–76. doi: https://doi.org/10.1007/s10957-007-9302-1.
V. A. de Oliveira. “Vector continuous-time programming without differentiability”. In: J. Comput. Appl. Math. 234.3 (2010), pp. 924–933. doi: https://doi.org/10.1016/j. cam.2010.02.012.
V. A. de Oliveira and M. A. Rojas-Medar. “Continuous-time multiobjective optimization problems via invexity”. In: Abstr. Appl. Anal. 2007.1 (2007). Art. ID 61296, 11 pp. doi: https://doi.org/10.1155/2007/61296.
V. Pareto. Cours d’Economie Politique. Lausanne: Rouge, 1896.
G. Ruiz-Garzón et al. “Optimality in continuous-time multiobjective optimization and vector variational-like inequalities”. In: TOP 23.1 (2015), pp. 198–219. doi: https://doi.org/10.1007/s11750-014-0334-z.