Evaluating Ordinal Pattern Features for 2D Colored Noise Classification


  • L. O. Baraúna
  • R. Sautter
  • R. R. Rosa
  • A. C. Frery




This study explores the potential of permutation entropy and statistical complexity for analyzing time series and image data of varying dimensions and noise types to extract features for computational vision. We projected one dimensional colored noise of different sizes and one and two-dimensional 1/f noise with different embedding dimensions to observe changes in permutation entropy and statistical complexity. The results of this study provide insights into the usefulness of the permutation entropy and statistical complexity in the analysis of complex time series data for future parameter extraction.


Não há dados estatísticos.

Biografia do Autor

L. O. Baraúna

Applied Computing Program (CAP), INPE-MCTI

R. Sautter

Applied Computing Program (CAP), INPE-MCTI

R. R. Rosa

Applied Computing Program (CAP), INPE-MCTI

A. C. Frery

School of Mathematics and Statistics, Victoria University of Wellington


Christoph Bandt and Bernd Pompe. “Permutation Entropy: A Natural Complexity Measure for Time Series”. In: Phys. Rev. Lett. 88 (17 2002), p. 174102. doi: 10.1103/PhysRevLett.8.174102. url: https://link.aps.org/doi/10.1103/PhysRevLett.88.174102.

Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. “Random phase textures: Theory and synthesis”. In: IEEE Transactions on image processing 20.1 (2010), pp. 257–267.

K. Keller and M. Sinn. “Ordinal analysis of time series”. en. In: Physica A: Statistical Mechanics and its Applications. Nonequilibrium Statistical Mechanics and Nonlinear Physics (MEDYFINOL’04) 356.1 (Oct. 2005), pp. 114–120. issn: 0378-4371. doi: 10.1016/j.physa.2005.05.022. url: https://www.sciencedirect.com/science/article/pii/ S0378437105004644 (visited on 03/08/2023).

Ares Lagae et al. “State of the Art in Procedural Noise Functions.” In: Eurographics (State of the Art Reports) (2010), pp. 1–19.

Mantas Landauskas, Maosen Cao, and Minvydas Ragulskis. “Permutation entropy-based 2D feature extraction for bearing fault diagnosis”. en. In: Nonlinear Dynamics 102.3 (Nov. 2020), pp. 1717–1731. issn: 1573-269X. doi: 10.1007/s11071-020-06014-6. url: https://doi.org/10.1007/s11071-020-06014-6 (visited on 03/08/2023).

Xiaoli Li, Gaoxian Ouyang, and Douglas A. Richards. “Predictability analysis of absence seizures with permutation entropy”. en. In: Epilepsy Research 77.1 (Oct. 2007), pp. 70–74. issn: 0920-1211. doi: 10.1016/j.eplepsyres.2007.08.002. url: https://www.sciencedirect.com/science/article/pii/S0920121107002434 (visited on 03/08/2023).

Cristina Morel and Anne Humeau-Heurtier. “Multiscale permutation entropy for two-dimensional patterns”. In: Pattern Recognition Letters 150 (2021), pp. 139–146. issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.2021.06.028. url: https://www.sciencedirect.com/science/article/pii/S0167865521002373.

Vinod Patidar et al. “A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption”. en. In: Optics Communications 284.19 (Sept. 2011), pp. 4331–4339. issn: 0030-4018. doi: 10.1016/j.optcom.2011.05.028. url: https://www.sciencedirect.com/science/article/pii/S0030401811005499 (visited on 03/08/2023).

Arthur A. B. Pessa and Haroldo V. Ribeiro. “ordpy: A Python package for data analysis with permutation entropy and ordinal network methods”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 31.6 (June 2021). Publisher: American Institute of Physics, p. 063110. issn: 1054-1500. doi: 10.1063/5.0049901. url: https://aip.scitation.org/doi/citedby/10.1063/5.0049901 (visited on 03/08/2023).

Jens Timmer and Michel Koenig. “On generating power law noise.” In: Astronomy and Astrophysics 300 (1995), p. 707.

Chang Xu. “An easy algorithm to generate colored noise sequences”. In: The Astronomical Journal 157.3 (2019), p. 127.

Ruqiang Yan, Yongbin Liu, and Robert X. Gao. “Permutation entropy: A nonlinear statis- tical measure for status characterization of rotary machines”. en. In: Mechanical Systems and Signal Processing 29 (May 2012), pp. 474–484. issn: 0888-3270. doi: 10.1016/j. ymssp.2011.11.022. url: https://www.sciencedirect.com/science/article/pii/ S0888327011005140 (visited on 03/08/2023).

Massimiliano Zanin et al. “Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review”. en. In: Entropy 14.8 (Aug. 2012). Number: 8 Publisher: Molecular Diversity Preservation International, pp. 1553–1577. issn: 1099-4300. doi: 10 .3390 / e14081553. url: https://www.mdpi.com/1099-4300/14/8/1553 (visited on 03/08/2023).

Luciano Zunino et al. “Forbidden patterns, permutation entropy and stock market ineffi- ciency”. en. In: Physica A: Statistical Mechanics and its Applications 388.14 (July 2009), pp. 2854–2864. issn: 0378-4371. doi: 10.1016/j.physa.2009.03.042. url: https://www.sciencedirect.com/science/article/pii/S0378437109002593 (visited on 03/08/2023).






Trabalhos Completos