Chaos control in high-resolution atmospheric predictions with a cloud-resolving model

Autores

  • Paul Krause Universidade Federal de Santa Catarina (UFSC)

DOI:

https://doi.org/10.5540/03.2025.011.01.0358

Palavras-chave:

climate change, atmospheric water cycle, cloud-resolving model, high space resolution, high Reynolds number, IBM prediction method, model error

Resumo

The atmospheric water cycle is dynamically unstable. The IBM prediction method is tested in high-resolution atmospheric water cycle predictions with a cloud-resolving model (CRM) with subgrid equations for viscous turbulence processes extracted from the compressible Navier-Stokes equations showing that the atmospheric water cycle has higher predictability under this method than under straightforward integrations of the CRM, both for moderate and high Reynolds numbers.

Downloads

Não há dados estatísticos.

Referências

C. Foias and G. Prodi. “Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2”. In: Rend. Sem. Mat. Univ. Padova 39 (1967), pp. 1–34.

J. Hadamard. “Les surfaces à courbures opposées et leurs lignes géodésiques”. In: J. Math. Pures Appl. 4 (1898), pp. 27–73.

G. E. Karniadakis, M. Israeli, and S. A. Orszag. “High-order splitting methods for the incompressible Navier-Stokes equations”. In: J. Computational Physics 97 (1991), pp. 414–443. doi: https://doi.org/10.1016/0021-9991(91)90007-8.

P. Krause. “Dyson’s split action formula for transport operators”. In: Matemática Contemporânea 56:8 (2023), pp. 135–142. doi: https://doi.org/10.21711/231766362023/rmc568.

P. Krause. “Influence sampling of trailing variables of dynamical systems”. In: Math. Clim. Weather Forecasting 3 (2017), pp. 51–63. doi: https://doi.org/10.1515/mcwf-2017-0003.

P. Krause and J. Tribbia. “Initialization and dynamical stabilization of a cloud-resolving model”. In: Physics Open 12 (2022), p. 100117. doi: https://doi.org/10.1016/j.physo.2022.100117.

R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, 2007. isbn: 978-0-898716-29-0.

E. N. Lorenz. “Deterministic nonperiodic flow”. In: Journal of the Atmospheric Sciences 20 (1963), pp. 130–141.

Y. Ogura and N. A. Phillips. “Scale analysis of deep and shallow convection in the Atmosphere”. In: J. Atmospheric Sciences 19 (1962), pp. 173–179. doi: https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

J. Smagorinsky. “General circulation experiments with the primitive equations”. In: Monthly Weather Review 91:3 (1963), pp. 99–164. doi: https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

Downloads

Publicado

2025-01-20

Edição

Seção

Trabalhos Completos