Constant rank-type constraint qualifications and second-order optimality conditions

Autores

  • Thiago P. Silveira University of São Paulo
  • Gabriel Haeser University of São Paulo

DOI:

https://doi.org/10.5540/03.2025.011.01.0517

Palavras-chave:

second-order cone programming, constant rank, constraint qualification, second-order optimality conditions

Resumo

The Constant Rank Constraint Qualification (CRCQ), introduced by Janin in [Math. Program. Study 21:110-126, 1984], has several applications in nonlinear programming context, such as computing the derivative of the value function, second-order optimality conditions, global convergence, stability analysis and encompass without entirely the linear program problems. This work will present an extension of CRCQ that retrieves the well known properties from nonlinear programming and, in addition, to propose a constraint qualification based on curves that naturally rises from CRCQ and explain in a very simple way the second-order optimality conditions that can be obtained for second-order cone programming problems.

Downloads

Não há dados estatísticos.

Referências

E. D. Andersen, C. Roos, and T. Terlaky. “Notes on duality in second order and p-order cone optimization”. In: Optimization (2002), pp. 627–643. doi: 10.1080/0233193021000030751.

R. Andreani, C. E. Echagüe, and M. L. Schuverdt. “Constant-rank condition and second-order constraint qualification”. In: Journal of Optimization theory and Applications 146.2 (2010), pp. 255–266.

R. Andreani, E. H. Fukuda, G. Haeser, H. Ramírez, D. O. Santos, P. J. S. Silva, and T. P. Silveira. “Erratum to: New constraint qualifications and optimality conditions for second order cone programs”. In: Set-Valued and Variational Analysis (2021), pp. 1–5. doi: 10.1007/s11228-021-00573-5.

R. Andreani, G. Haeser, L. M. Mito, H. Ramírez, D. O. Santos, and T. P. Silveira. “Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming”. In: Optimization Letters (2022), pp. 1–22.

R. Andreani, G. Haeser, L. M. Mito, H. Ramírez, and T. P. Silveira. “First-and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition”. In: Mathematical Programming (2023), pp. 1–41.

R. Andreani, G. Haeser, L. M. Mito, H. Ramírez, and T. P. Silveira. “Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming”. In: Journal of Optimization Theory and Applications 195.1 (2022), pp. 42–78.

Roberto Andreani, Ellen H Fukuda, Gabriel Haeser, Daiana O Santos, and Leonardo D Secchin. “Optimality conditions for nonlinear second-order cone programming and symmetric cone programming”. In: Optimization online (2019).

J. F. Bonnans and H. Ramírez. “Perturbation analysis of second-order cone programming problems”. In: Mathematical Programming, Series B 104 (2005), pp. 205–227. doi: 10.1007/s10107-005-0613-4.

E. Börgens, C. Kanzow, P. Mehlitz, and G. Wachsmuth. “New constraint qualifications for optimization problems in Banach spaces based on asymptotic KKT conditions”. In: SIAM Journal on Optimization 30.4 (2020), pp. 2956–2982.

M. Guignard. “Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space”. In: SIAM Journal on Control 7.2 (1969), pp. 232–241.

R. Janin. “Directional derivative of the marginal function in nonlinear programming”. In: Mathematical Programming Study 21 (1984), pp. 110–126.

G. Pataki. “On the closedness of the linear image of a closed convex cone”. In: Mathematics of Operations Research 32.2 (2007), pp. 395–412.

Thiago Parente da Silveira. “Constant rank-type constraint qualifications and second-order optimality conditions”. PhD thesis. University of São Paulo, 2023.

Y. Zhang and L. Zhang. “New constraint qualifications and optimality conditions for second order cone programs”. In: Set-Valued and Variational Analysis 27 (2019), pp. 693–712.

Downloads

Publicado

2025-03-27

Edição

Seção

Prêmio Marco Antônio Raupp (Doutorado) - CNMAC 2024