Interval Contingent Derivative and Single-Level Interval Derivative

Autores

  • Gino G. M. Huaman National University of San Antonio Abad of Cusco
  • Talia V. Torres National University of San Antonio Abad of Cusco
  • Ulcilea A. S. Leal Universidade Federal do Triângulo Mineiro

DOI:

https://doi.org/10.5540/03.2026.012.01.0297

Palavras-chave:

Interval-valued functions, Single-level derivative, Multifunction, Contingent derivative of a multifunction

Resumo

In this paper, the concept of the Interval Contingent Derivative is presented, which allows identifying a relationship between the contingent derivative of a compact convex-valued multifunction and the single-level derivative of an interval-valued function.

Downloads

Não há dados estatísticos.

Referências

J. P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhäuser Boston, 2009. doi: 10.1007/978-0-8176-4848-0. url: https://doi.org/10.1007%2F978-0-8176-4848-0.

Y. Chalco-Cano, W. A. Lodwick, and B. Bede. “Single level constraint interval arithmetic”. In: Fuzzy Sets and Systems 257 (Dec. 2014), pp. 146–168. doi: 10.1016/j.fss.2014.06.017. url: https://doi.org/10.1016%2Fj.fss.2014.06.017.

A. Geletu. “Introduction to topological spaces and set-valued maps (Lecture notes)”. In: Ilmenau, Germany: Institute of Mathematics, Department of Operations Research and Stochastics, Ilmenau University of Technology (2006).

J. Jahn. Introduction to the theory of nonlinear optimization. Springer Nature, 2020.

A. A. Khan, C. Tammer, and C. Zalinescu. Set-valued optimization. Springer, 2016.

K. Kuratowski. “Introduction”. In: Topology. Ed. by K. Kuratowski. Academic Press, 1966, pp. 1–37. isbn: 978-0-12-429201-7. doi: https://doi.org/10.1016/B978-0-12-429201-7.50005-3. url: https://www.sciencedirect.com/science/article/pii/B9780124292017500053.

U. A. S. Leal, G. Maqui, G. N. Silva, and W. A. Lodwick. “Single-Level Differentiability for Interval-valued Functions”. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. SBMAC, Dec. 2022. doi: 10.5540/03.2022.009.01.0304. url: https://doi.org/10.5540%2F03.2022.009.01.0304.

W. A. Lodwick. “Constrained interval arithmetic (Technical Report 138). Denver, CO: University of Colorado at Denver”. In: Center for Computational Mathematics (1999).

L. Stefanini, M. L. Guerra, and B. Amicizia. “Interval Analysis and Calculus for Interval-Valued Functions of a Single Variable. Part I: Partial Orders, gH-Derivative, Monotonicity”. In: Axioms 8.4 (Oct. 2019), p. 113. doi: 10.3390/axioms8040113. url: https://doi.org/10.3390%2Faxioms8040113.

Downloads

Publicado

2026-02-13

Edição

Seção

Trabalhos Completos