Simulações Numéricas e o Fenômeno de Scattering na Equação Zakharov-Kuznetsov Generalizada em 2D
Resumo
Este trabalho tem como objetivo estudar e simular numericamente o fenômeno de scattering (espalhamento) das soluções do problema de valor inicial (PVI) associado a Equação de Zakharov-Kuznetsov Generalizada (gZK) em duas dimensões espaciais ([1, 4, 5, 7, 8, 10, 11]). [...]
Downloads
Referências
H. A. Biagioni and F. Linares. “Well-posedness Results for the Modified Zakharov-Kuznetsov Equation”. In: Nonlinear Equations: Methods, Models and Applications (2003), pp. 181–189. doi: 10.1007/978-3-0348-8087-9_13.
B. Birnir, C. Kenig, G. Ponce, N. Svanstedt, and L. Vega. “On the Ill-Posedness of the IVP for the Generalized Korteweg-De Vries and Nonlinear Schrödinger Equations”. In: Journal of the London Mathematical Society 53 (1996), pp. 551–559.
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. “Sharp global well-posedness for KdV and modified KdV on R and T, J.” In: Journal of the American Mathematical Society 16 (2001), pp. 705–749. doi: 10.1090/S0894-0347-03-00421-1.
A. V. Famisnkii. “The Cauchy problem for the Zakharov–Kuznetsov equation”. In: Differ. Uravn. 31 (1995), pp. 1070–1081.
L. G. Farah, F. Linares, and A. Pastor. “A note on the 2D generalized Zakharov-Kuznetsov equation: local, global and scattering results”. In: Journal of Differential Equations 253 (2012), pp. 2558–2571. doi: 10.1016/j.jde.2012.05.019.
L. G. Farah, F. Linares, A. Pastor, and N. Visciglia. “Large data scattering for the defocusing supercritical generalized KdV equation”. In: Communications in Partial Differential Equations 43 (2018), pp. 118–157. doi: 10.1080/03605302.2018.1439063.
E. Hussain, S. Malik, A. Yadav, S. A. A. Shah, M. A. B. Iqbal, A. E. Ragab, and H. M. A. Mahmoud. “Qualitative analysis and soliton solutions of nonlinear extended quantum Zakharov-Kuznetsov equation”. In: Nonlinear Dynamics 112 (2024), pp. 19295–19310.
S. Islam, M. N. Alam, M. F. Al-Asad, and C. Tunç. “An analytical Technique for Solving New Computational Solutions of the Modified Zakharov-Kuznetsov Equation Arising in Electrical Engineering”. In: Journal of Applied and Computational Mechanics 7 (2021), pp. 715–726.
C. Kenig, G. Ponce, and L. Vega. “Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle”. In: Communications on Pure and Applied Mathematics 46.4 (1993), pp. 527–620.
A. N. Nirmala and S. Kumbinarasaiah. “An intriguing numerical strategy for Zakharov–Kuznetsov equation through graph-theoretic polynomials”. In: Physica Scripta 99.9 (2024), pp. 95267.
S. Raut, S. Roy, R. R. Kairi, and P. Chatterjee. “Approximate analytical solutions of generalized Zakharov–Kuznetsov and generalized modified Zakharov–Kuznetsov equations”. In: International Journal of Applied and Computational Mathematics 7 (2021), pp. 1–25.
T. Tao. “Two remarks on the generalised Korteweg de-Vries equation”. In: Discrete and Continuous Dynamical Systems 18 (2007), pp. 1–14. doi: 10.3934/dcds.2007.18.1.