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Abstract. History Matching (HM) is an important problem in Oil Reservoir Simulation.
We present here the Truncated Conjugate Gradient (TCG) Method to solve this problem.
We compare TCG with two other well known schemes, TSVD and L-BFGS, in a numerical
experiment using the benchmark problem PUNQ-S3. Our results indicate that TCG is a
valuable tool for HM.
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1 Introduction

Simulations of multiphase flows in porous media are the “nuts and bolts” of petroleum-
reservoir engineers. A reservoir simulator is the piece of software that computes, for
instance, the evolution of oil and gas production rates or bottom-hole pressure at each
well, by means of numerically solving the appropriate partial differential equations. See [9].

A reservoir simulator takes as input a model of the reservoir: a description of its
geometry, of the properties of the rock and of the fluids, etc. Such data are not readily
available for natural reservoirs (often inconveniently buried under miles of water, rock and
salt), but rather obtained indirectly, from seismic data or geological knowledge about the
formation. Using this a priori information, an exploitation strategy for the reservoir is
conceived and implemented. After some years, the history of the field (past production
data at wells) is often quite distant from what had been predicted by simulations based
on the prior information.

History Matching (HM) is a data-assimilation technique, in which the history is used
in order to improve the quality of the reservoir characterization. The basic idea is to look
for reservoir parameters (such as permeability or porosity) for which simulation better
matches the historical data actually recorded.

Various schemes have been designed to solve the HM problem, such as L-BFGS [3,13]
and TSVD [1,10,12]. Most recently, we have proposed the Truncated Conjugate Gradient
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(TCG) algorithm for HM [2]. As we describe in this work, TCG is based on the Gauss-
Newton method. At each step, the optimization problem is linearized around the current
approximation and the corresponding linear system is solved using the Conjugate Gradient
method. As is usually the case with ill-posed problems, some regularization must be
introduced. Here, this is done through a truncation procedure. We compare the behavior
of TCG, TSVD and L-BFGS in some numerical experiments. In our results, TCG clearly
outperforms TSVD. TCG displays a higher convergence rate than L-BFGS, although the
latter runs faster.

The rest of this paper is organized as follows. In Section 2 we present a Bayesian
formulation for the HM problem. In Section 3 the TCG algorithm is discussed. We recall
the formulations of L-BFGS and TSVD in Section 4. Section 5 portrays a comparative
study of the behavior of TCG, L-BFGS, TSVD in the PUNQ-S3 reservoir model [6]. This
is a well known benchmark problem in HM.

2 Mathematical Model

Following [8], we assume that the a priori model is a Gaussian random variable whose
probability distribution function (pdf) is given by

fprior(m) ∝ exp
(
− 1

2
‖m−mprior‖2C−1

M

)
.

Here, mprior is the a priori mean, CM is the a priori covariance matrix and, for a symmetric
positive-definite matrix A, ‖ · ‖A stands for the norm ‖m‖A = 〈Am,m〉1/2.

Usually, the a priori information is rather poor. Therefore, the true reservoir produc-
tion is often far from the prediction. In History Matching, one uses this new information,
the actual history of the reservoir production (oil, gas and water productions, bottom-hole
pressures at the wells, etc.) to better characterize the reservoir.

We consider that the vector ε of measurement errors of the history data dobs is a
normal random variable with covariance CD. Further assuming that ε is independent of
the a priori model, the a posteriori distribution (conditioned to the history data) satisfies

fm|dobs(m) ∝ exp
(
− 1

2

(
‖m−mprior‖2C−1

M
+ ‖g(m)− dobs)‖2C−1

D

)
.

Here g(m) is the vector of observations associated with model m (i.e., g represents the
reservoir simulator) and dobs is the vector of the actual observations, see [8]. One would
like to generate a set of reservoir models sampling fm|dobs . This is, in general, too costly.
A less expensive procedure is to obtain the Maximum a Posteriori (MAP) solution

mmap = mmap(mprior, dobs) = arg min
m

J(m), (1)

where

J(m) = ‖m−mprior‖2C−1
M

+ ‖g(m)− dobs‖2C−1
D
. (2)
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A set of solutions to the problem can be obtained from the Randomized Maximum
Likelihood (RML) strategy [4,8]. RML amounts to generating a set of n vectors of observa-

tions
{
d

(i)
obs

}
i=1,...,n

and of models
{
m

(i)
prior

}
i=1,...,n

according to the respective probability

distributions and to obtain MAP solutions m
(i)
map = mmap(m

(i)
prior, d

(i)
obs) of (1). In this way,

the use of RML reinforces the need of solving the optimization problem (1) efficiently.
As is usual with inverse problems, HM is ill-conditioned. A regularizing procedure is

to consider the Cholesky decomposition CM = LLT and the change of variables

θ(m) = L−1(m−mprior), m(θ) = mprior + Lθ, (3)

so that ‖m−mprior‖C−1
M

= ‖θ‖. The MAP problem in θ is to obtain θmap such that

θmap = arg min
θ

Jθ(θ), (4)

where Jθ(θ(m)) = J(m), i.e., Jθ(θ) = ‖θ‖2 + ‖g(m(θ))− dobs‖2C−1
D

.

3 TCG

We now describe briefly the Truncated Conjugate Gradient (TCG) scheme to solve (4).
More details can be found in [2]. We use Gauss-Newton, so that at each step g(m(θ)) is
replaced by its linearization around the current estimate θk, i.e., g(m(θ)) ≈ gk +GkL∆θ,
where gk = g(mk), mk = m(θk), ∆θ = θ − θk and Gk = (d/dm)g(mk), the derivative of
the observations with respect to the model parameters, is the so-called sensitivity matrix.
We thus obtain the linear least squares problem

min
∆θ

Jθk (∆θ), (5)

where Jθk (∆θ) = ‖θk+∆θ‖2+‖GkL∆θ−rk‖2C−1
D

, with rk = dobs−gk. Then (5) is equivalent

to solving
(I + LTGTKC

−1
D GkL)∆θk = LTGTkC

−1
D rk − θk. (6)

Notice that LTGTkC
−1
D rk − θk = −∇Jθk/2 and I + LTGTKC

−1
D GkL = Hk/2, where Hk

is the Hessian of Jθk . We apply the standard conjugate gradient (CG) algorithm (see,
e.g., [5]) to solve (6). However, similarly to what happens with the TSVD algorithm,
one has to appropriately truncate the CG iteration. Finally, the solution obtained using
TCG provides a direction in which a line search is performed. It is possible to implement
TCG without having to compute the Cholesky decomposition of CM . This is relevant for
large-scale problems, since the factorization cost scales with the cube of the grid size.

4 TVSD and L-BFGS

We briefly describe TSVD and L-BFGS, which have been previously employed in HM,
see [1, 3, 10,12,13].
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Analogously to TCG, TSVD is also based on Gauss-Newton. As with TCG, at step k
one has to solve (6). The solution can be obtained as a linear combination of the right sin-

gular values of C
− 1

2
D GkL. In TSVD, the summation in this linear combination is truncated

in an appropriate way, see [1, 10,12] for further details.

The BFGS iterative method to solve the general problem of minimizing a function f(x)
was proposed simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno. The
central idea is to construct at step k a search direction ∆xk using a rank-two update of
the approximation Hk of f ′′(xk). The limited-memory L-BFGS(n) scheme uses only the
information of the n most recent steps to build Hk. For more details, see [4, 7].

5 Numerical Experiments

We present numerical experiments comparing the performance of TCG, TSVD and
L-BFGS for the HM problem. We observe that at each iteration TCG and TSVD approx-
imately solve (6). This resolution involves the application of both the sensitive matrix Gk
and of its adjoint GTk to vectors. In L-BFGS, the approximation of the Hessian is based
solely on gradient values at previous iterates and therefore only applications of GTk are
required. In our experiments, we make use of SIMPAR, a basic fully implicit 3D black-oil
simulator developed by Petrobras and featuring tools for the computation of derivatives
and adjoints.

We considered the benchmark PUNQ-S3 [6] for our tests. It is a model with a grid
size of 19×28×5 and 1,761 active blocks. Figure 1 depicts a colormap of the depth of the
reservoir top. The initial oil-water contact (blue contour) and gas-oil contact (red contour),
a sealing fault (black line) and six production wells (black dots) are also indicated. There
is an aquifer to the West and to the North of the reservoir and there are no injector wells.

Figure 1: Colormap of the depth of the reservoir top, PUNQ-S3.
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In this HM problem, the vector of parameters m consists of porosity and horizontal
and vertical log-permeabilities at each grid cell. Geostatistical information about the
parameters is given (basically, CM ), as well as measured values for these properties at well
gridblocks (so-called hard data). This leaves us with about 5,200 parameters.

The history, consisting of bottom-hole pressure, water cut and gas-oil ratio at the wells,
includes one year of extended well testing, followed by three years of field shut-in and four
years of field production. The oil production rates for each well are given and used as
boundary conditions, but if the minimum bottom-hole pressure for a well is reached, the
simulation proceeds with such pressure prescribed.

Our PUNQ model displays some minor changes with respect to the original (see [2]) to
accommodate for SIMPAR limitations. In our algorithm, we actually introduce a change
of variables for the porosity, in order to generate an unconstrained optimization problem.

We have implemented RML to obtain a set of parameter fields honoring the geological
a priori model, the hard data and the production history. Figure 2 shows the porosity
fields of the true reservoir and of one solution obtained with TCG. They are quite different,
as expected, since the HM problem has many solutions within the acceptable margin of
error.

porosity at each layer

true

adj.

Figure 2: Porosity fields of the true and of one of the adjusted models.

We tested the ability of RML to predict the reservoir production. Figure 3 displays
the graphs of the field cumulative productions of oil (left), gas (center) and water (right).
Each green line represents the simulated production of one reservoir model obtained by
use of TCG. To the left of the red line we have the 8-year history period, and to the
right, the forecast for the following 8.5 years. The results for TSVD and L-BFGS are
similar. We see that the true future behavior is contained in the fan of the extrapolations
coming from RML. In those experiments, we consider that a simulation run has converged
if J(mfinal) ≤ D. The value of D we choose comes from probabilistic considerations,
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where the MAP solution is supposed to be a χ2 random variable, see [8, 11].

Figure 3: In green, extrapolations of cumulative oil, gas and water production. In blue, the true
field. The red vertical line indicates the end of the history period.

Table 1 presents the total simulation time and the number of converged cases of TCG,
TSVD and L-BFGS for 100 simulations using RML. TCG (n) indicates that at most n
directions are used in each CG interation. We see that TSVD had a poor behavior when
compared with the other schemes. While TCG was the most robust scheme, with the
greatest number of converged runs, L-BFGS was the least time consuming. The total
time divided by the number of successes is comparable for these two schemes. For others
experiments in which TCG had clearly the best overall performance, see [2].

Table 1: Converged cases and time for 100 simulations.

Algorithm Converged cases Total Time (sec.)

L-BFGS 35 33,843

TSVD 46 209,860

TCG (5) 79 73,254

TCG (10) 78 99,725

6 Conclusion

In this work we describe the TCG algorithm for History Matching. We used the
standard benchmark PUNQ-S3 to compare TCG with TSVD and L-BFGS, two well known
schemes for HM. In these experiments, TCG presented the most robust behavior, while
L-BFGS displayed the smallest running time. We will develop further comparative studies
on these schemes.
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