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Abstract— Nonlinear effects are broadly presents in several kinds of mechanical systems. Thus, it is necessary
to use a suitable tool that becomes possible to characterize these nonlinearities in many situations. Volterra series
can be useful for describing nonlinear systems through multiple convolutions. In this sense, the main goal of
this work is to approximate the solutions of the motion equations using Volterra series in order to describe
the nonlinear dynamical behavior of some mechanical benchmarks. Duffing oscillator, bilinear oscillator and
a quadratically damped oscillator are analyzed to illustrate the efficiency, advantages and drawbacks of the
proposed approach.

Keywords— nonlinear system identification, discrete-time Volterra series, benchmark systems

1 Introduction

System identification methods can be a good ap-
proach to estimate a model for describing the
dynamical behavior. Classical linear parametric
and nonparametric methods are currently used for
this purpose (Aguirre, 2007; Ljung, 2007). These
strategies are based on superposition principle and
they are not available considering nonlinear struc-
tures. Although it may be possible to represent
systems which are perturbed over a restricted op-
erating range by a linear model, in general, non-
linear processes only can be described adequately
by a nonlinear models, such as Volterra mod-
els (Billings, 1980).

The Volterra series were introduced by Vito
Volterra by the end of the XIX century. These
models are an alternative technique based on a
functional power series known as Volterra series.
Volterra series have been extensively applied in
many areas such as biological systems (Zhang
et al., 1998), electrical engineering in the model-
ing of nonlinear circuits (Bojorsell, 2008), the pre-
diction of wind farm (Lee, 2011), signal process-
ing involving electrodynamic loudspeaker (Kaizer,
1987), adaptive filtering (Ogunfunmi, 2007),
aeroelastic systems (Silva, 2005), structural health
monitoring (Caterjee, 2009), etc.

Volterra formulation have been used in the
discrete time-domain involving nonlinear mechan-
ical applications (da Silva, 2011) and in the
frequency-domain through an intuitive represen-
tation known as Generalized Frequency Response

Functions (GFRF’s) (Peng et al., 2008). The ad-
vantage of Volterra formulation are the Volterra
multidimensional kernels that represent the direct
generalization of impulse response function (IRF)
from the linear dynamical models and allows to
separate the response of the system in linear and
nonlinear components. However, this technique
can present some drawbacks and is limited by sev-
eral reasons (da Silva et al., 2010), numerical prob-
lems of response convergence due to a large num-
ber of samples is required to described the Volterra
kernels and the identification of kernels is difficult
to achieve for complex analytical models due to
over-parametrization.

Fortunately, a convenient expansion of
Volterra model on an orthonormal basis, known as
a Wiener series, can overcome the above inconve-
nient and limitations (Schetzen, 1980). This idea
was introduced by Norbert Wiener (Wiener, 1958)
and consists in to expand the real-physics sys-
tem in terms of an orthonormal basis described
by functions, e.g., Kautz functions (Kautz, 1954).
The representation using the Kautz basis allows to
describe and identify nonlinear systems with dom-
inant dynamic of second order because they are
composed by complex conjugated poles. Thus, the
orthonormal Kautz functions are more suitable in
many situations involving nonlinear systems with
strong oscillatory behavior. The orthonormality
property of those functions characterized the fact
that the orthonornal series allows to reduce dras-
tically the parameters to be estimated and can in-
crease the speed of convergence in problems iden-
tification (da Rosa et al., 2007).

In this sense, the aim of this work is to de-
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scribe the dynamical behaviour of three bench-
marks systems: Duffing oscillator, bilinear oscil-
lator and a quadratically damped oscillator us-
ing Volterra series expanded in the orthonormal
Kautz basis. Thus, the paper is organized as fol-
low. First of all are presented the discrete Volterra
models. Next, the identification procedure us-
ing a conventional least squares approach with
orthonormal Kautz basis are briefly reviewed.
The identification and dynamical behaviour of the
benchmarks are discussed in section 4. Finally, the
results are discussed and suggestions are proposed
in the section 5 for further applications.

2 Discrete Volterra series

Volterra series has been widely used for model-
ing and identification of nonlinear systems. In
the general case for discrete-time, Volterra se-
ries relate the output y(k) and the input u(k)
of a SISO causal system by the following expres-
sion (Schetzen, 1980):

y(k) =

+∞∑
m=1

Hm(k) (1)

in which the Volterra functional operator Hm(k)
is given by multidimensional convolutions:

Hm(k) =

N1∑
n1=0

. . .

Nm∑
nm=0

hm(n1, . . . , nm)

m∏
i=1

u(k−ni)

where hm are the m th-order Volterra kernels con-
sidering the truncated values N1, . . . , Nm for each
kernel. It is worth to note that by Eqs. (1) and
(2) is the generalization of the impulse response
function (IRF) for a linear dynamic systems:

y(k) =

N1∑
n1=0

h1(n1)u(k − n1) (2)

To illustrate the main idea of Volterra formula-
tion, Figure 1 shows the schematic representa-
tion of M th-order Volterra model. Although

Figure 1: Block diagram representation of a
system characterized by a M th-order Volterra
model.

Volterra models have nice properties to be used
in a broad class of non-linear identification, this
formulation present drawbacks for modeling sys-
tems when the number of samples collected is
high (da Silva, 2011). Fortunately, to describe the
Volterra series on an orthonormal basis can be
an efficient way to overcome these inconvenient.
Thus, section 3 briefly reviews the identification
procedure of Volterra kernels expanded in the or-
thonormal Kautz basis with a least square ap-
proach applied in some common mechanical sys-
tems.

3 Identification of Volterra kernels

In order to identify a given nonlinear system, clas-
sical methods and analytical techniques, such as
harmonic probing method (Bedrosian and Rice,
1971; Cafferty and Tomlinson, 1997), can be used
to obtain the Volterra kernels. By the least square
approach, the vector with the values desired of
Volterra kernels can be obtained solving:

Θ̂ = [UTU]−1UTy (3)

In practice, the number of parameters of the vec-
tor Θ̂ can be large due to oscillatory systems with
large memory. Increasing the number of kernels,
the number of parameters to be estimated in-
creases significantly. One way to overcome these
drawbacks and over-parametrization effects is to
expand the Volterra models in terms of an or-
thonormal Kautz basis (da Silva et al., 2010). The
Kautz basis functions are very effective in rep-
resenting the orthogonal kernels to identify the
Volterra kernels associated with oscillatory dy-
namical systems (Kautz, 1954; Wahlberg, 1994).
The pairs of Kautz functions Ψj(z) has complex
conjugate poles represented by β2g−1 = σ + jω
and β2g = σ− jω such as |β2g−1|,|β2g| < 1 for sta-
ble system. Thus, the generalized pairs of Kautz
functions are given by (Heuberger et al., 2005):

Ψ2j−1(z) =

√
1− b2

√
1− c2

z2 + b(c− 1)z − c
[Hb,c(z)]

j−1 (4)

Ψ2j(z) = Ψ2j−1(z)
z − b√
1− b2

(5)

where Hb,c(z) = −cz2+b(c−1)z+1
z2+b(c−1)z−c and the scalar

values b and c, relative to the poles β2g−1, β2g con-
sidered are given by:

b =
β2g−1 + β2g

1 + β2g−1β2g
and c = −β2g−1β2g (6)

where the poles in the continuous-domain are
function of parameters ωng and ξg described by
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βg = −ξgωng ± jωng
√

1− ξ2
g . Optimization pro-

cedures can be used for the choice of the Kautz
poles (da Rosa et al., 2007). In this work, genetic
algorithm is used and based on a minimization of
the prediction error function of the Volterra mod-
els using the Euclidean norm:

J(ρ, k) =‖ y(k)− ŷ(ρ, k) ‖ (7)

with ρ = {J1, . . . , Jm, ξ2, . . . , ξg, ω2, . . . , ωng}
where J1, . . . , Jm are the number of func-
tions/filters and ŷ(ρ, k) is the total output esti-
mated using Votlerra models. After building the
continuous Kautz filter using the optimal poles
based on parameters ωng and ξg, it is necessary
to use a transformation to the discrete domain
zg = eβg.∆t, where ∆t is the sampling rate. Af-
ter this, assuming that the kernels hm(n1, . . . , nm)
in Eq. (2) are absolutely summable on [0,∞], it
is possible to approximate the functional Volterra
kernels by the Wiener series using the following
expression:

Hm(k) ≈
J1∑
i1=1

. . .

Jm∑
im=1

αi1,...,im

m∏
j=1

lij (k) (8)

where αi1,...,im are the coefficients used in the or-
thonormal basis. The term lij (k) is represented
by:

lij (k) =

V−1∑
ni=0

ψij (ni)u(k − ni) (9)

where V = max{J1, . . . , Jm}. Now, rewriting
Eq. (3) based on the orthonormal Kautz basis
described in Eqs. (8) and (9), the estimative of
vector Φ composed by the coefficients αi1,...,im is
given by:

Φ̂ = (ΓTΓ)−1ΓTy (10)

where the matrix Γ contains the input regressors
filtered by Kautz filters ψij .

4 Illustrative examples

Some examples are made to illustrate the ap-
proach. In each nonlinear system simulated, the
output signal y(k) were approximated through
the Newmark method integration solved with
Newton-Raphson procedure.

4.1 Duffing oscillator

The Duffing oscillator model subject to chirp in-
put signal u(k), with amplitude 0.5 [N] sweeping
the frequency range from 1 to 200 [Hz], is de-
scribed by nonlinear motion equation:

mÿ(k) + cẏ(k) + k1y(k) + η(k) = u(k) (11)

where m = 0.075 [kg], c = 0.5 [N.s/m], k1 =
2.2x103 [N/m] and the nonlinear term η(k) is
given by η(k) = k2y

2(k) + k3y
3(k) where k2 =

4.9x105 [N/m2], k3 = 8.1x107 [N/m3]. A sam-
pling frequency of 1 [kHz] and 8192 samples were
used. In order to obtain the first, second and third
order Volterra kernels, the first step is to build the
Kautz filters from the parameters ωng [rad/s] and
ξg with g = 1, 2, 3. The natural frequency of the
system represented in Eq. 11 is ωn1 = 171.27
[rad/s] and the damping factor is ξ1 = 0.0195. In
the optimization results, it were obtained J1 = 10
and J2 = J3 = 6 Kautz functions, ωn2 = 168.32
and ωn3 = 193.67 [rad/s], ξ2 = 0.0452 and ξ3 =
0.0902 considering 50 generations, the population
size equals 100 and crossover fraction equals 0.8.
After this, the input was filtered by the impulse
response of the Kautz functions Ψij and it was
processed the vector Θ with the estimative for the
coefficients αi1,i2,i3 related with the respective ker-
nel. Finally, the Volterra kernels were estimated
solving Eq. 8 illustrated, respectively, in the Fig-
ures 2, 3 and 4.
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Figure 2: 1st Volterra kernel.

Figure 3: 2nd Volterra kernel.

After the estimative of each Kernel considered
in the identification procedure it was processed
the total output ŷ(k) considering the model identi-
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fied. Figure 5 shows a considerable estimative for
the output ŷ(k) through the system considering
3 Volterra kernels expanded in the orthonormal
Kautz basis. Figure 6 shows the linear, quadratic
and cubic response estimated.

Figure 4: 3rd Volterra kernel considering a surface
cut in 100.
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Figure 5: Comparison between the output mea-
sured y(k) and total response ŷ(k) using Volterra
models.
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Figure 6: Contribution of each component in the
total response.

4.2 Bilinear oscillator

The bilinear models are a special class of nonlin-
ear polynomial models (Jácome et al., 1998). The
model is described by:

mÿ(k) + cẏ(k) + η (y(k)) = u(k) (12)

where m = 1 [kg], c = 23.5619 [N.s/m], k1 =
7.1x103 [N/m], k2 = 2.84x104 [N/m] and the
nonlinear term η(k) = k1y(k) if y(k) < 0 or
η(k) = k2y(k) if y(k) ≥ 0. A chirp input sig-
nal u(k), with amplitude 0.5 [N] sweeping the fre-
quency range from 1 to 80 [Hz] was applied. A
sampling frequency of 100 [Hz] and 1024 samples
were used in this case. In the optimization results,
it were obtained J1 = 10 and J2 = J3 = 6 Kautz
functions, ωn2 = 486.32 and ωn3 = 502.65 [rad/s],
ξ2 = 0.107 and ξ3 = 0.199 considering 50 genera-
tions, the population size equals 200 and crossover
fraction equals 0.8 in the genetic algorithm uti-
lized. The Volterra kernels were estimated solv-
ing Eq. 8 and are illustrated, respectively, in the
Figures 7, 8 and 9. It was estimated the output
using the kernels identified and the Figure 10 the
contribution of each response.
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Figure 7: 1st Volterra kernel.
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Figure 8: 2nd Volterra kernel.
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Figure 9: 3rd Volterra kernel considering a surface
cut in 10.
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Figure 10: Contribution of each component in the
total response.

4.3 Quadratically damped oscillator

This mechanical system is widely used in marine
engineering, as in modeling oscillations of ships
in balance (Gomes, 2011). The equation of mo-
tion for a quadratically damped oscillator, where
the damping is proportional to the square of the
velocity, is a non-linear second-order differential
equation expressed by:

mÿ(k) + cẏ(k) |ẏ(k)|+ ky(k) = u(k) (13)

where m = 1 [kg], c = 19.5619 [N.s2/m2], k =
3.5x104 [N/m]. A chirp input signal u(k), with
amplitude 0.5 [N] sweeping the frequency range
from 1 to 70 [Hz] was generated in this case. A
sampling frequency of 100 [Hz] and 1024 samples
were used. In the optimization results, it were
obtained J1 = J3 = 8 and J2 = 10 Kautz func-
tions, ωn2 = 389.96 and ωn3 = 158.66 [rad/s],
ξ2 = 0.005 and ξ3 = 0.0143 considering 50 genera-
tions, the population size equals 200 and crossover
fraction equals 0.8 in the genetic algorithm uti-
lized. Figures 11, 12 and 13 show the Volterra
kernels estimated.
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Figure 11: 1st Volterra kernel.

Figure 12: 2nd Volterra kernel.

Figure 13: 3rd Volterra kernel considering a sur-
face cut in 15.

5 Final remarks

This paper proposed the application of Volterra
models in benchmarks structures in order to ob-
tain the dynamical information about the system,
unknown a priori. By employing the Volterra for-
mulation, it was possible to estimate considerable
approximation for each response of the systems
simulated. The numerical procedure based on ge-
netic algorithm enabled to estimate the Volterra
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kernels using the orthonormal Kautz basis and
drastically reduction on parameters to be esti-
mated in the identification procedure. From the
results shown, this approach can be useful in non-
linear mechanical systems for the purpose of to de-
scribe characteristics and dynamical information.
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à Pesquisa do Estado de São Paulo (FAPESP),
grant number 12/09135-3, 12/04757-6, 12/25483-
1 and 13/05273-5 .

References

Aguirre, L. A. (2007). Introdução à Identifi-
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