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1 Introduction

It is a fact that classical calculus of variations
problems might not have a smooth or even a con-
tinuous solution, although they are still of physical
interest. Here, we shall focus namely on the dis-
continuous case. The following problem of varia-
tional calculus illustrates how discontinuities may
emerge.

Minimize

∫ 1

0

x(t)
√

1 + (ẋ)2dt, (1)

subject to x(0) = R1, x(1) = R2.

This is the problem of finding a minimal area
of the surface of revolution formed by a mem-
brane stretched over two parallel disks of radiuses
R1 and R2, respectively. The application of the
Euler-Lagrange principle leads to a second or-
der differential equation and a boundary prob-
lem, which does not have a solution for some val-
ues of the parameters R1, and R2. The physical
meaning of such situation is as follows: if num-
bers R1, and R2 are sufficiently large (or the dis-
tance between the two disks sufficiently small),
the membrane exists and the surface of revolu-
tion is smooth. But, as the distance between
the two disks increases, the membrane stretches
and, at some point, breaks: at that very moment,
the smooth and continuous solution fails to exist.
However, this does not mean that the surface of
revolution does not exist at all. Clearly, it is the
surface of the union of the two disks aimed at each
other and the segment [0, 1]. This means that the
solution x(t) will be R1 for t = 0, R2 for t = 1
and 0 for t ∈ (0, 1) and, thus, it is discontinuous.
In other words, the solution will be impulsive.

In the framework of his famous program
David Hilbert suggested to extend calculus of vari-
ations theory in order to cover and to formulate
such degenerate situations by giving a strict math-
ematical meaning to non-classical solutions. He
expressed confidence that “every problem in the

calculus of variations has a solution, provided that
the term ’solution’ is interpreted appropriately”.
This desideratum spawned a number of develop-
ments on the extension of the classic calculus of
variation by various authors. For the rich history
of this issue, we refer the reader to the article (B.
Mordukhovich, Existence of optimal controls. J.
Soviet Math. 7 (1977), 850-886). Here, we only
point out to important contributions on exten-
sions of the classical calculus of variations made by
Lebesgue, Tonelli, Young, Bogolyubov, Gamkre-
lidze, Krotov, Rockafellar, Tikhomirov, Warga,
among others.

With the advent of Optimal Control and the
Pontryagin’s maximum principle in the fifties, the
theory of discontinuous solutions for variational
calculus advanced significantly gradually giving
shape to the area of Impulsive Optimal Control.
So, what is the subject of the impulsive control
theory? This theory covers and contains in itself,
as a limiting case, a wide class of degenerate cal-
culus of variations and optimal control problems
for which classical continuous solutions fail to ex-
ist. This theory provides not only the way how to
interpret the concept of solution but also the pro-
cedure to find it. The basic idea is to extend the
conventional concept of control as well as the con-
cept of trajectory. The usual bounded and mea-
surable control can be replaced, for instance, by
a Borel measure. Then, the trajectory becomes
a function of bounded variation. This approach
already suggests a reasonable extension for linear
systems which covers many actual applications.

Let us give a simple example to illustrate how
impulsive controls arise by providing an extension
to the following calculus variation problem

Minimize

∫ 1

0

x2dt, (2)

subject to ẋ = v, v ∈ R1,

x(0) = 0, x(1) = 1.
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So, we need to minimize the area under the
curve x2(·) where the arc x(·) is to reach the point
x = 1 starting from zero at t = 0. Then, there
is obviously no solution to this problem in the
class of continuous trajectories due to the fact that
any minimizing sequence of trajectories converges
pointwise to the discontinuous function x(t) = 0
as t ∈ [0, 1) and x(1) = 1.

Then, how could a solution be defined? A
solution can be found by extending the set of ad-
missible trajectories admitting that the trajectory
might have now discontinuities. Or, equivalently,
this means to introduce impulsive controls instead
of the convenient integrable control v from L1. For
problem (2), it is appropriate to consider Borel
measures as impulsive controls. Any conventional
control v(·) can be considered as an absolutely
continuous measure µ such that dµ = v(t)dt.
However, there will exist also other controls, like
Dirac’s measures, that cannot be reduced to con-
ventional ones.

Thus, the conventional problem is extended
by enlarging the class of trajectories/controls, be-
ing problem (2) rewritten in the impulsive context
as follows:

Minimize

∫
[0,1]

x2dt,

subject to dx = dµ, µ ∈ C∗([0, 1]),

x(0) = 0, x(1) = 1.

Here, any admissible trajectory x(·) is already
a function of bounded variation and so may ex-
hibit discontinuities. The notation dx = dµ is
understood in the integral sense, or, in terms of
measures, it means that the Borel measure gener-
ated by x(·) is absolutely continuous with respect
to µ and it is its Radon-Nykodim derivative with
respect to µ (which, in this particular case, is equal
to unity).

It is easy to see that solution to the ex-
tended problem exists and the optimal trajectory
is x(t) = 0 for t < 1, and x(1) = 1. Moreover,
the fact that Borel measures are being used as
extended controls, together with the weakly* se-
quential compactness of the unit ball in C∗([0, 1]),
implies that the described extension procedure is
successful in ensuring the existence of solution for
large classes of linear control problems. (For ex-

ample, whenever the total variation
∫ 1

0
|v(t)|dt is

to be minimized.)
Thanks to the weak* convergence of measures,

the extension procedure is rather clear when the
dynamical system is linear in (x, v), like in the
example (2). However, the complexity of the ex-
tension will increase when more general dynamical
control systems are considered:

ẋ = f(x, u, t) + g(x, t)v, v ∈ K, (3)

where u is usual (classical) bounded control, the
function f defines conventional control dynamics,
v is an unbounded vector-valued control, g some
matrix-valued function, and the set K, a convex
closed cone.

How to describe the solution in this case? The
extension procedure introduced above can not be
applied any longer since the passage to the weak*
limit is not correct for non-linear systems. Indeed,
this is shown by the following simple example. Let
K = R2. Consider the dynamical system with
vector-valued control v = (v1, v2):

ẋ = xv1 + x2v2, x(0) = 1.

If we try to extend this system to the class of
Borel measures, regarding bounded total varia-

tion
∫ 1

0
|v(t)|dt ≤ const, we will see that, to ev-

ery control, i.e., to every vector measure, there
corresponds an entire integral funnel of trajecto-
ries x(·), any of which may claim to be called a
solution to the extended dynamical system.

Thus, in the non-linear case, Borel measures
are simply not enough to construct all achievable
trajectories and controls. But, as we will see later,
the new design control turns out be a Borel mea-
sure plus a certain family of usual measurable
functions, which we will designate by associated
family. The reason to introduce these associated
functions is to select a single trajectory from the
integral funnel and, thus, they can be regarded as
controls acting at the discontinuities of the trajec-
tory.

Therefore, herein, we aim at extending the
classic calculus of variations and/or optimal con-
trol problems by introducing a new type of impul-
sive controls. We provide appropriate theorems
for the existence of solution for constrained im-
pulsive control problems.

Before concluding the introduction, let us
show that there is no loss of generality in consider-
ing the case in which the coneK in (3) is contained
in the first orthant Rk

+ := {ξ ∈ Rk : ξj ≥ 0}. In-
deed, along with the system (3) we consider the
system

ẋ = f(x, u, t) + g(x, t)P v̄, v̄ ∈ K̄. (4)

Here, P : R2k → Rk is a linear operator defined
by (Pξ)j = ξ2j−ξ2j−1, j = 1, ..., k, and K̄ = {v̄ ∈
R2k

+ : P v̄ ∈ K} is a closed convex cone.
Note that any scalar function r(t) can be

represented as a difference of two non-negative
functions, i.e., r = r+ − r−, where r+(t) =
max{r(t), 0}, and r−(t) = −min{r(t), 0}. Then,
for a given function v̄, we define v as v = P v̄,
and, vice-versa, for a given function v, we con-
struct v̄ by the formula v̄2j−1 = vj−, v̄2j = vj+,
j = 1, ..., k. This establishes the equivalence of
the systems (3) and (4) in the sense that the sets
of admissible trajectories for (3), and (4) coincide.
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At the same time, this equivalence is ambiguous
since one control v may correspond to different
controls v̄. Nevertheless, all such v̄ will generate
the same trajectory.

2 Statement of the Problem

Consider the following optimal impulsive control
problem:

Minimize c(p)
subject to dx = f(x, u, t)dt+ g(x, t)dϑ,

dy = d|ϑ|, y(t0) = 0,
φ(x, t) ≤ 0,
u(t) ∈ U, range(ϑ) ⊂ K,
p ∈ S, t ∈ T.

(5)
Here, the functions c : R2n+1 → R1, f : Rn×Rm×
R1 → Rn, g : Rn ×R1 → Rn×k, φ : Rn ×R1 → Rl

are continuously differentiable, T = [t0, t1] is a
fixed time interval, p = (x0, x1, y1), where x0 =
x(t0), x1 = x(t1) and y1 = y(t1), is the so called
endpoint vector, S is a closed set in R2n+1, U is a
closed set in Rm, K is a closed convex cone con-
tained in the first orthant Rk

+, c(p) is the cost func-
tion to be minimized, the vector-function φ defines
the inequality state constraints, and ϑ = (µ; {vτ})
is a new object which we call impulsive control.
The measure |ϑ| designates the variation measure
of the impulsive control, whereas y1 becomes its
total variation.

The impulsive control consists of two compo-
nents. While the first one, µ, is a vector Borel
measure with range in K (this means that µ(B) ∈
K for any Borel set B ⊂ T ), the second compo-
nent, {vτ}, is a family of measurable vector func-
tions defined on the interval [0, 1], with values in
K, and depending on the real parameter τ ∈ T .
Let us provide the exact properties of this family
as well as the definition of the impulsive control
and of the associated trajectory x(·), that solves
to the differential equation in (5).

Consider a Borel vector measure µ such that
range(µ) ⊂ K. Take a number τ ∈ T . Let
Wτ (µ) ⊂ Lk

∞([0, 1]) defines the set of functions
v : [0, 1] → K satisfying the following two condi-
tions:

i)

k∑
j=1

vj(s) =

k∑
j=1

µj(τ), a.a. s ∈ [0, 1];

ii)

∫ 1

0

vj(s)ds = µj(τ), j = 1, .., k.

Here, µj(τ) = µj({τ}) is the value of µj at the
single point set {τ}, the symbol a.a. s means “al-
most all s”. Note that Wτ (µ) = {0} whenever
µj(τ) = 0, ∀ j.

The pair ϑ = (µ; {vτ}) is said to be impulsive
control, provided vτ ∈ Wτ (µ) ∀ τ ∈ T . The family

{vτ} is called associated to the vector measure
µ. The variation |ϑ| of the impulsive control ϑ =

(µ; {vτ}) is the variation measure |µ| :=
∑k

j=1 µ
j .

Thus the impulsive control is constructed by
the measure complemented with the associated
family. The associated family is defined by the
above relations i) and ii). As usual, the function
u(·) in (5) defines conventional control and as-
sumed to be measurable and essentially bounded
with respect Lebesgue measure ℓ. Let us now in-
troduce the concept of trajectory.

Take an impulsive control ϑ = (µ; {vτ}), a
number τ ∈ T and an arbitrary vector x ∈ Rn.
Denote by χτ (·) = χτ (·, x) the solution to the fol-
lowing dynamical system{

χ̇τ (s) = g(χτ (s), τ)vτ (s), s ∈ [0, 1],
χτ (0) = x.

(6)

The function of bounded variation x(·) on
the interval T is called solution to the differen-
tial equation in (5), corresponding to the control
(u, ϑ) and the initial point x0, if x(t0) = x0 and,
for every t ∈ (t0, t1],

x(t) = x0 +

∫ t

t0

f(x, u, ς)dς +

+

∫
[t0,t]

g(x, ς)dµc +
∑
τ≤t

[
xτ (1)− x(τ−)

]
,

(7)

where xτ (·) := χτ (·, x(τ−)) and the measure µc

designates the continuous component of µ. Note,
that the sum in (7) is well defined since there
is only a countable set of points τ , where vτ is
nonzero.

The state constraints φ(x, t) ≤ 0 in (5) should
be understood in a wider sense than that of a con-
ventional inequality. This is due to the presence
of the impulsive component. Let us precise this
meaning. Let us be given any admissible trajec-
tory x(·) corresponding to the impulsive control
ϑ. Consider the variation measure |ϑ|. Denote by
Ds(ϑ) := {τ ∈ T : |ϑ|(τ) > 0} the set of atoms
of |ϑ| (impulses). Now, the inequality φ(x, t) ≤ 0
has to be understood in the following generalized
sense: φ(x, t) ≤ 0 ⇔{

φ(x(t), t) ≤ 0, a.a. t ∈ T,
φ(xτ (s), τ) ≤ 0, a.a. s ∈ [0, 1], ∀ τ ∈ Ds(ϑ).

The collection (x, y, u, ϑ) is called control pro-
cess, if dy = d|ϑ| and (7) holds. A control process
is said to be admissible, if all the constraints of
problem (5) are satisfied. An admissible process

(x̂, ŷ, û, ϑ̂) is said to be optimal if, for any admis-
sible process (x, y, u, ϑ), the inequality c(p̂) ≤ c(p)
holds, where p̂ = (x̂(t0), x̂(t1), ŷ(t1)).

3 Existence Theorem

In the previous section we defined a certain exten-
sion of various control problems to the case of tra-
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jectories with discontinuities. Once the extension
is defined, the main issue remains to understand
whether and under what conditions, this extension
is of interest in the sense that a solution exists to
the extended problem. We shall now prove the
existence under assumptions of Filippov’s type.

Hereinafter, by modulus of a vector, we un-
derstand the sum of absolute values of the coor-
dinates, i.e., |x| =

∑
i |xi|. Then, SRk , the unit

sphere surface in Rk, is

SRk := {x ∈ Rk : |x| = 1}.

Theorem 1 Assume that:

a) The sets U and S are compact.

b) The set f(x,U, t) is convex for all x, t.

c) ∃ b > 0: φ(x, t) ≤ 0 ⇒ |x| ≤ b for all t.

e) Problem (5) possesses at least one admissible
process.

Then, there exists a solution to the problem (5).

Let us preface the proof with a simple exercise
from convex analysis.

Lemma 2 Let the sets A, B be convex. Then,
the set

C :=
∪

α∈[0,1]

(αA+ (1− α)B)

is also convex.

Proof: Let us fix a pair of points ξ1, and ξ2 in C
and β ∈ (0, 1). We need to show that βξ1 + (1 −
β)ξ2 ∈ C. By definition, we have:

ξ1 = α1ξ
A
1 +(1−α1)ξ

B
1 , ξ2 = α2ξ

A
2 +(1−α2)ξ

B
2 ,

where ξAi ∈ A, ξBi ∈ B. Then,

βξ1 + (1− β)ξ2 = βα1ξ
A
1 + β(1− α1)ξ

B
1 +

(1− β)α2ξ
A
2 + (1− β)(1− α2)ξ

B
2

=
[
βα1ξ

A
1 + (1− β)α2ξ

A
2

]
+[

β(1− α1)ξ
B
1 + (1− β)(1− α2)ξ

B
2

]
.

If α1 = 0 and α2 = 0, or if α1 = 1 and α2 = 1,
the desired inclusion is obvious due to convexity
of the sets A, and B. Assume then that α1, and
α2 are simultaneously either 0 or 1. Let us put

γA = βα1 + (1− β)α2, and

γB = β(1− α1) + (1− β)(1− α2).

Clearly, γA, and γB are positive. From the above
relation, we have

βξ1 + (1− β)ξ2 = γA

[
βα1

γA
ξA1 + (1−β)α2

γA
ξA2

]
+

+γB

[
β(1−α1)

γB
ξB1 + (1−β)(1−α2)

γB
ξB2

]
.

Note that
βα1

γA
ξA1 +

(1− β)α2

γA
ξA2 ∈ A, and

β(1− α1)

γB
ξB1 +

(1− β)(1− α2)

γB
ξB2 ∈ B due to con-

vexity. It remains to ensure that γA + γB = 1.
Indeed,

γA + γB = βα1 + (1− β)α2 + β(1− α1)+
+ (1− β)(1− α2)

= βα1 + α2 − βα2 + β − βα1 + 1−
−β − α2 + βα2

= 1.

Thus, βξ1 + (1− β)ξ2 ∈ C. 2

Proof: The proof is based on the Lebesgue dis-
continuous change of time variable. Consider an
auxiliary problem

c(p) → min
ẋ = αf(x, u, χ) + (1− α)g(x, χ)v,
ẏ = 1− α,
χ̇ = α, s ∈ [0, s1],
p = (x0, x1, y1) ∈ S,
y(0) = 0, χ(0) = t0, χ(s1) = t1,
α ∈ [0, 1], v ∈ K, |v| = 1,
u ∈ U, φ(x, χ) ≤ 0.

(8)

Unlike the problem (5) considered on the fixed
time segment [t0, t1] with the time variable t, the
problem (8) is considered on the non-fixed time
segment [0, s1] with the time variable s. However,
problem (8) possesses control functions u(s), v(s),
α(s), where the scalar function α(s) is an auxiliary
control, which are of conventional type, i.e., they
are measurable and essentially bounded. Thus,
problem (8) is conventional autonomous control
problem with free time.

Let us show that the two problems, (5) and
(8), are equivalent in the sense that for every ad-
missible process (x, y, u, ϑ) of problem (5), there
exists an admissible process (x̃, ỹ, χ, ũ, v, α, s1) of
problem (8), such that c(p) = c(p̃), where p =
(x0, x1, y1) and p̃ = (x̃0, x̃1, ỹ1), and vice-versa.

First, let us be given an admissible process
(x, y, u, ϑ) of problem (5). Consider discontinuous
time variable change

π(t) = t− t0 + |ϑ|([t0, t]) as t > t0, π(t0) = 0.

Note that function π(t) maps segment T into
[0, s1], where

s1 = t1 − t0 + |ϑ|(T ).

Moreover, it maps (ℓ + |ϑ|)-measurable sets into
ℓ-measurable sets. It is easy to establish the ex-
istence of the inverse function θ(s) : [0, s1] → T
which has the following properties:

1) θ(s) is monotone increasing function on
[0, s1];
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2) θ(s) is Lipschitz function since |θ(s)− θ(t)| ≤
|s− t|, ∀ s, t ∈ [0, s1];

3) θ(s) = τ , ∀ s ∈ Γτ , ∀ τ ∈ T , where Γτ =
[π(τ−), π(τ+)].

By changing values of the function u(t) on
a zero ℓ-measure set, we will ensure that u(t) is
measurable w.r.t. the measure ℓ + |ϑ|. Indeed,
it is enough to put u(t) = 0, ∀ t ∈ D, where D
is an arbitrary set of points of zero measure that
the singular component of the measure |ϑ̂| maps
onto a full measure set. On the other hand, since
ℓ(D) = 0, the values of u do not affect the evolu-
tion of the trajectory, and, hence, this change of
values of the function u(·) is not restrictive.

Let us take ũ(s) = u(θ(s)). The function ũ is
now ℓ-measurable thanks to the properties of u(t)
and π(t) stated above.

α(s) =

 m1(θ(s)), when s /∈
∪

τ∈Ds(ϑ)

Γτ ,

0, otherwise,

v(s)=


m2(θ(s))

1− α(s)
, if s /∈

∪
τ∈Ds(ϑ)

Γτ and α(s) < 1,

ℓ−1(Γτ )vτ (ξτ (s)), when s ∈ Γτ ,

where,m1 andm2 are the Radon-Nykodim deriva-
tives of the measures ℓ and µc with respect to

ℓ + |ϑ|, ξτ (s) :=
s− π(τ−)

ℓ(Γτ )
: Γτ → [0, 1]. When

α(s) = 1, the values of v(s) may be taken as ar-
bitrary unit vectors from K, since the trajectory
x(·) does not depend on those values. Note that
v(s) ∈ K and |v(s)| = 1 due tom1(t)+|m2(t)| = 1
a.a. t /∈ Ds(ϑ) w.r.t. the measure ℓ+ |ϑ|.

By definition, it follows θ(s) = t0+

∫ s

0

α(ς)dς.

Therefore, χ(s) = θ(s). By performing the vari-
able change in (7), it is easy to see that the tra-
jectory x̃(·), solution to the dynamical system (8)
corresponding to the just constructed collection
(x0, ũ, v, α, s1), exists and it is exactly the func-
tion

xext(s) :=

{
xτ (ξτ (s)) if ∃ τ ∈ Ds(ϑ) : s ∈ Γτ ,
x(θ(s)) otherwise.

Then, x̃(s1) = x(t1). By construction, we also
have that ỹ(s1) = |ϑ|(T ) = y(t1). Therefore,
c(p) = c(p̃) and p̃ ∈ S. Besides φ(x̃(s), χ(s)) =
φ(xext(s), θ(s)) ≤ 0 in view of definition of the
state constraints. So, the process constructed
above is admissible to problem (8) and the cost
function takes the same value, c(p).

Conversely, let us be given an admissible pro-
cess (x̃, ỹ, χ, ũ, v, α, s1) of problem (8). The func-
tion χ(s) is the inverse of some discontinuous time
variable change π̃ : T → [0, s1]. The function
π̃ is uniquely defined as the one that satisfies
π̃(χ(s)) = s, a.a. s such that α(s) > 0, π̃(t0) = 0,

π̃(t1) = s1, and π̃(t) is right-continuous in (t0, t1).
Once π̃ is determined, we find the measure µ via
its distribution function:

F (t, µ) =

∫ π̃(t)

0

(1− α(s))v(s)ds.

Let us take u(t) = ũ(π̃(t)), vτ (s) = ℓ(Γ̃τ )v(γ̃τ (s)),
where

Γ̃τ = [π̃(τ−), π̃(τ+)],

γ̃τ (s) = ℓ(Γ̃τ )s+ π̃(τ−) : [0, 1] → Γ̃τ .

Let x(·) be the solution defined by (7). It follows
right from the change of variable that x(t1) =
x̃(s1), y(t1) = ỹ(s1). Clearly, the endpoint and
the state constraints are satisfied. So, the con-
structed process is admissible to problem (5),
whereas the cost function takes on the same value
c(p̃).

Thus, we have shown that the two problems
(5) and (8), are equivalent. Therefore, if a solution
exists to one of the problem, then it also exists to
the other.

Let us check the existence of solution to the
auxiliary problem (8). Observe that the velocity
set of (8), that is,∪

α∈[0,1]

α
(
f(x, U, t), 0, 1

)
+

+(1− α)
(
g(x, t)(K ∩ SRk), 1, 0

)
⊆ Rn+2,

is convex due to the assumption b) of the theo-
rem, the convexity of the set K ∩SRk , and also to
Lemma 2. This, coupled with the other assump-
tions a), c), e) allow us to apply the classic Filip-
pov’s existence theorem to the problem (8) which
is valid under the considered conditions. So, the
solution to the auxiliary problem exists. Then, it
also exists to the original problem (5).

Above, we implicitly used the fact that the
endpoint constraints in (8) and the assumption a)
imply s1 ≤ const. Indeed, for the trajectory y in
(8), we have:

y(s1) =

∫ s1

0

(1− α)ds = s1 − (t1 − t0)
a)
=⇒

s1 ≤ const .

The assumption d) was used implicitly while per-
forming the discontinuous variable change.

The proof is complete. 2
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