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Cauê F. Teixeira da Silva2
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Abstract. A graph tessellation is a partition of the vertices of the graph into cliques and
a graph tessellation cover is a set of graph tessellations that covers the edges of the graph.
A graph is 3-tessellable if it has a tessellation cover with three tessellations. The study of
graph tessellations is important in quantum computation because the evolution operator
of the staggered quantum walk model is obtained from a graph tessellation cover. In this
work we establish a characterization on the smallest tessellation cover of a graph G using the
chromatic number of its clique graph χ(K(G)) by showing that a diamond-free graph G is 3-
tessellable if and only if χ(K(G)) ≤ 4 and there is a vertex coloring assignment of K(G) with
a special property. As a consequence of such characterization, we obtain a hardness proof for
determining if a line graph of a triangle-free graph is 3-tessellable. Moreover, we introduce
a special type of edge coloring of a triangle-free graph G which corresponds to a tessellation
cover of its line graph. This hardness proof allows us to establish the NP -completeness of
this new coloring problem for triangle-free graphs.

Keywords. diamond-free graphs, clique graph, line graph, graph tessellation, staggered
quantum walk

1 Introduction

In the last years, the area of quantum walks is steadily increasing possibly because
it is considered one of the main tools for building quantum algorithms. Recently, the
staggered quantum walk model [7] was proposed with the aim of generalizing previous
known models, such as the coined quantum walk model [8]. The dynamics of the staggered
model is based on a new concept of graph theory, called graph tessellation cover, which is
under development [1].

In this work, we make a new contribution for the recognition of 3-tessellable graphs by
characterizing which diamond-free graphs are 3-tessellable. We show that for a diamond-
free graph G, G is 3-tessellable if and only if χ(G) ≤ 4 and, besides, it is possible to assign
a vertex coloring of K(G) with a special property, described ahead (see property P1). As a
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consequence of such characterization, we obtain a hardness proof for determining if a line
graph of a triangle-free graph is 3-tessellable. Next, we present an interesting new way to
edge coloring a graph, using stars subgraphs to cover all its P3’s,

4 in such way that if two
stars intersect, then their edges do not receive a same color. The previous hardness result
allows us to establish the NP-completeness of this new coloring problem for triangle-free
graphs.

2 Main definitions

The clique graph K(G) of a graph G has the maximal cliques of G as its vertices and
there is an edge between two vertices of K(G) if their corresponding maximal cliques share
a neighborhood in G. A similar concept, the line graph L(G) of a graph G has the edges
of G as its vertices and there is an edge between two vertices of G if their corresponding
edges share a same extreme in G. A coloring (resp. edge-coloring) of a graph G is an
assignment of k colors to its vertices (resp. edges) such that two adjacent vertices (resp.
two edges which shares an extreme) receive different colors. The smallest value of k for
such a graph G admits a coloring (resp. edge-coloring) is denoted by χ(G) (resp. χ′(G)).

A tessellation of a graph G = (V,E) is a partition of V into vertex-disjoint cliques. A
tessellation cover of G with size k is a set of k tessellations of G so that the union of the
edges of these vertex disjoint cliques in all these k tessellation covers the edge set E(G).
A graph G is k-tessellable if there is a tessellation cover of size k. When k is minimum,
we denote it by T (G) (or its tessellation cover number). The t-tessellability problem
receives a graph G and asks if G is t-tessellable, that is, if T (G) ≤ t. A maximal clique K
of a graph G is said exposed by a tessellation cover C if E(K) 6⊆ E(T ) for all T ∈ C, that
is, the edges of K are covered by no tessellation of C. See Ref. [1] for details.

In this paper, for the sake of convenience, we may omit in our proofs and figures
the one-vertex cliques in the tessellations. Moreover, we consider only connected graphs
with at least three vertices because the tessellation cover of connected components can
be considered separately and graphs with one or two vertices can be covered by one
tessellations.

The following facts described in [1, 2, 5] are used in this work.

Fact 2.1. If G is a diamond-free graph, then any two maximal clique of G intersect in at
most one vertex and K(G) is diamond-free.

Fact 2.2. If G is a triangle-free graph, then K(L(G)) = G′, where G′ is obtained from G
by removing its leaves.

Fact 2.3. Let G be a 3-tessellable diamond-free graph. If C1 and C2 are two maximal
cliques of G with a common vertex, then C1 and C2 cannot be both exposed by a minimum
tessellation cover.

Fact 2.4. If G is a 3-tessellable diamond-free graph, then χ(K(G)) ≤ 4.

4P3 is the graph •—–•—–•.
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Note that the last fact states a necessary condition for 3-tessellability of diamond-free
graph. In this work, we obtain the sufficient condition and we are able to characterize
3-tessellable diamond-free graphs

3 Tessellation covers on diamond-free graphs

Let us review the results regarding the characterization of 2-tessellable graphs. Por-
tugal [6] showed that a graph is 2-tessellable if and only if its clique graph is 2-colorable.
Peterson [5] showed that a graph is the line graph of a bipartite multigraph if and only if
its clique graph is 2-colorable. Then, the class of 2-tessellable graphs is the class of line
graphs of bipartite multigraphs. This is a full characterization of 2-tessellable graphs. In
terms of computational complexity, 2-tessellable graphs are known to be recognizable in
linear time [1].

Now we focus on a partial characterization of the class of 3-tessellable graphs, which
is an extension of the characterization of 2-tessellable graphs. We define the following
properties:

• We say that a 4-colorable graph has property P1 if there is a vertex proper coloring
assignment such that at least one color (say c4) satisfies the following property. For
each vertex v with color c4, if there is a pair of distinct vertices v1 and v2 in the
neighborhood of v, then the set {v, v1, v2} does not induce a triangle.

• We say that a 4-colorable graph has property P2 if there is a vertex proper coloring
assignment such that at least one color (say c4) satisfies the following property. For
each vertex v with color c4, if there is a pair of distinct vertices v1 and v2 with
different colors c1 and c2 in the neighborhood of v and the set {v, v1, v2} induces a
triangle, then v is not adjacent to a vertex with the remaining color c3.

We prove the following result:

Theorem 3.1. Let G be a diamond-free graph. The following statements are equivalent:

(i) G is 3-tessellable.

(ii) K(G) is 4-colorable with property P1.

(iii) K(G) is 4-colorable with property P2.

Proof. (i) ⇒ (iii) Suppose that G is 3-tessellable and let set {T1, T2, T3} be a tessellation
cover of G. Fact 2.4 implies that K(G) is 4-colorable.

Now we check that K(G) has property P2. Suppose by contradiction that there is a
vertex v ∈ K(G) with color c4 that does not have property P2, that is, there are vertices
v1, v2 and v3 with colors c1, c2, and c3, respectively, such that the set {v, v1, v2} induces
a triangle and v3 is adjacent to v. In G, there exists cliques C1 ∈ T1, C2 ∈ T2, and C
corresponding to vertices v1, v2, and v; and these cliques are incident to exactly one vertex
w ∈ G. Besides, there is another clique C3 ∈ T3 corresponding to vertex v3 that intersects
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C in one vertex w1 ∈ G because v3 is adjacent to v in K(G). If w1 = w, we have a
contradiction because a graph with four maximal cliques incident to a vertex w cannot be
3-tessellable. If w1 6= w, then the edge w1w has two maximal cliques incident to vertex
w and one maximal clique incident to w1. This case is also a contradiction because w1w
does not belong to the tessellation cover and G cannot be 3-tessellable.

(iii) ⇒ (ii) Suppose that K(G) is 4-colorable and has property P2. Consider a vertex
coloring assignment of K(G) with colors c1, c2, c3, and c4 such that c4 satisfies the property
described in the definition of property P2, that is, if a vertex v ∈ K(G) has color c4 and
there are vertices v1 and v2 with colors c1 and c2 such that {v, v1, v2} induces a triangle, v
cannot be adjacent to a vertex with the remaining color c3. Then, we can change the color
of v from c4 to the color class v has no neighbors in it. This procedure can be applied
to all vertices v with color c4 that belongs to a triangle. The output is a new coloring
assignment that has property P1.

(ii) ⇒ (i) Suppose that K(G) is 4-colorable and has property P1. Consider a vertex
coloring assignment of K(G) with colors c1, c2, c3, and c4 such that c4 satisfies the property
described in the definition of property P1. We describe a tessellation cover {T1, T2, T3} of
G. Tessellation T1 contains the maximal cliques of G associated with the vertices in K(G)
with color c1, and the description is analogous for the vertices in K(G) with colors c2 and
c3.

Now we show that the maximal cliques of G associated with vertices in K(G) of color
c4 can be covered with tessellations T1, T2, and T3. Let C4 be a maximal clique of G
associated with a vertex v ∈ K(G) of color c4. Let w1 and w2 be two vertices in C4. There
is at most one maximal clique of G incident to each endpoint of the edge w1w2 because if
there is two maximal cliques C1 and C2 both incident to w1 (or w2), the vertices v1, v2,
and v associated with cliques C1, C2, and C4 induces a triangle, violating property P1.

Since there is at most one maximal clique of G incident to each endpoint of the edge
w1w2, we can assign integer 1 to w1w2 if the incident cliques are associated with vertices of
colors c2 and c3. It is analogous with integers 2 and 3. We repeat this process and all edges
of C4 receives labels 1, 2, or 3. This procedure can be repeated for all cliques associated
with color c4. Now we extend tessellations {T1, T2, T3} that were partially described before,
and tessellation T1 covers the edges with label 1, tessellation T2 covers the edges with label
2, and tessellation T3 covers the edges with label 3. This is possible because, for each of
the remaining non-covered maximal cliques, the vertices of the extremes of the edges with
a missing label can be covered by a clique in the corresponding tessellation, that is, in
the tessellation with the same label. At this point, all edges of G have been assigned to a
tessellation, and the tessellation cover is obtained by addressing any remaining vertex with
cliques of size 1. Note that the maximal cliques associated with color c4 are exposed.

Corollary 3.1. Let G be a triangle-free graph. L(G) is 3-tessellable if and only if χ(G) ≤
4.

Proof. By Fact 2.2, K(L(G)) = G′, where G′ is obtained from G by removing its leaves.
Clearly, χ(K(L(G)) = χ(G′) = χ(G) because the missing leaves of G do not modify
its chromatic number (disregarding isolated vertices). Note that the line graph L(G) of
a triangle-free graph G is diamond-free [3] and, besides, any 4-coloring of G applied to

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

DOI: 10.5540/03.2018.006.02.0308 010308-4 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0308


5

K(L(G)) has property P1 because K(L(G)) is triangle-free. The rest of this proof follows
from Theorem 3.1.

Remark 3.1. Note that the result of Corollary 3.1 also holds for a triangle-free multigraph
G. This happens because a multiedge of a graph G corresponds to a true twin vertex in
L(G). Besides, we know that the addition of true twins on a t-tessellable graph maintains it
t-tessellable [1]. Moreover, neither χ(G) nor χ(K(L(G))) is modified by adding multiedges.

Corollary 3.2. 3-tessellability is NP-complete for line graphs of triangle-free graphs.

Proof. It is known that t-tessellability is in NP [1]. Using Corollary 3.1 we know that
the line graph of a triangle-free graph G is 3-tessellable if and only if G has χ(G) ≤ 4.
Thus, the result follows from the NP-completeness proof of Maffray and Preissmann [4]
for deciding if a triangle-free graph G has χ(G) ≤ 4.

Remark 3.2. The only known graph classes t-tessellability is NP-complete are:
(2,1)-chordal, (1,2), planar, triangle-free, unichord-free, and diamond-free graphs with
diameter at most five [1]. Therefore, our results include the line graph of triangle free
graphs in such collection of graph classes where t-tessellability is hard to solve.

4 Star P3-cover edge coloring

We introduce a star P3-cover edge coloring of a graph G. This non-proper edge coloring
has star subgraphs in each color class (where all the edges of the stars have the color of
that class). We aim to cover all P3’s of the graph using stars subgraph with the restriction
that if two stars share an edge, then they need to be in different color classes. Let χ′

SP3
(G)

be the minimum number of color classes we need so that G admits a star P3-cover edge
coloring.

Remark 4.1. Consider an extremal case of a star P3-cover edge coloring of a graph G,
where all the stars cover all the vertices of the neighborhood of their centers. If we have
a coloring f of G, we may assign the color of each vertex to the stars they center in this
extremal case. That is, when two vertices are adjacent, their stars shares an edge, and
they need to be in different color classes, what occurs because the two adjacent vertices
receives different colors in f . Therefore, χ′

SP3
(G) ≤ χ(G).

Figure 1 (see (a) and (b)) depicts a Mycielski graph, which is a triangle-free graph
with χ′

SP3
(G1) = 3 and χ(G1) = 4 and in (c) and (d) we have the Petersen graph, which

has χ′
SP3

(G2) = 3 and χ(G2) = 3. In (a) we pick the stars with all the neighbors of the
centers, the colors of the stars induce a coloring of G on their centers. Therefore, we use
χ(G) = 4 colors. However, in (b) we improve this number by not using all the neighbors
on the center of the star in vertex k. If we use 3 stars to cover the P3’s which pass by the
vertex k instead of only one, but these stars have less number of leaves, it allows us to
reduce the number of necessary colors on the assignment. In (c) we can use the 3-coloring
of the Petersen graph to establish the star P3-cover edge coloring with 3-colors. However,
in (d) we show that is possible to obtain a different star P3-cover edge coloring with same
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number of colors, not using the entire neighborhood in two stars (the ones centered in the
vertices a and d). In all cases, we also illustrate the tessellation cover of the line graph
associated with the star P3-cover edge coloring of the graph.

Figure 1: Star P3-cover edge coloring of a Mycielski graph and Petersen graph.

Theorem 4.1. A star P3-cover edge coloring of a triangle-free graph G has a one-to-one
correspondence to a tessellation cover of its line graph L(G).

Proof. Since L(G) is the line graph of a graph G, each P3 in G corresponds to a distinct
edge of L(G). Each star subgraph in any graph G corresponds to a clique in L(G).
Moreover, G be triangle-free implies that each clique in L(G) are associated with a star
subgraph of G (see Fact 2.2). Note that the triangle-free property is important because if
G has a triangle, there is a clique in L(G) that is associated with this triangle, and not to
a star subgraph of G.

Let f be a minimum star P3-cover edge coloring of G. Define χ′
SP3

(G) tessellations of
L(G), where each tessellation i contains the cliques of L(G) associated with the edges of
the stars in G with the color i. As every P3 is covered by some stars in G, thus each edge
is covered by some tessellation in L(G). Moreover, there is no two cliques in a tessellation
sharing a vertex, since it implies that two stars share an edge with the same color, which
is a contradiction. Therefore, these χ′

SP3
(G) tessellations form a tessellation cover of G.

Conversely, let g be a minimum tessellation cover of L(G) with T (G) tessellations.
Define a star P3-cover edge coloring f of G as follows. The edges of the stars associated
with the clique of a tessellation i of L(G) receive the color i. As all edges of L(G) are
covered by a tessellation, thus all P3’s of G are covered by some star. Moreover, if two of
such stars share an edge, it means that their cliques share a vertex, that is, they are in

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

DOI: 10.5540/03.2018.006.02.0308 010308-6 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0308


7

different tessellations and the corresponding stars receive different colors. Therefore, g is
a star P3-cover edge coloring of G with T (G) colors.

Remark 4.2. In the extremal case when all the stars use all the neighbors of their
centers, the problem becomes equivalent to coloring of G (see Remark 4.1). Moreover,
since it covers all P3’s incident to that vertex, it covers all the edges of the corresponding
maximal clique in L(G). Therefore, it is a tessellation cover of L(G) using χ(G) colors.
Since χ(G) = χ(K(G)) (see Corollary 3.1), the result is consistent because it is known
that a tessellation cover that uses a single tessellation for each maximal clique has size
χ(K(G)) [1].

Corollary 4.1. To determine χ′
SP3

(G) of a triangle-free graph G is NP-complete.

Proof. It follows directly from Corollary 3.1 and Corollary 3.2.
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