Um algoritmo inercial para funções DC em variedades de Hadamard

João Santos Andrade, Jurandir de Oliveira Lopes, João Carlos de Oliveira Souza

Resumo


Um algoritmo de ponto proximal inercial para funções DC é apresentado no contexto devariedades de Hadamard. Se a sequˆencia gerada por nosso algoritmo é limitada, provaremos quecada ponto de acumulação ́e um ponto crítico da função objetivo.

Texto completo:

PDF

Referências


Absil P.-A., Mahony R. and Sepulchre R.Optimization algorithms on matrix manifolds. Prin-ceton University Press, 2009.

Almeida, Y.T., Cruz Neto, J.X., Oliveira,P.R. and Souza, J.C.O. A modified proximal pointmethod for DC functions on Hadamard manifolds,Computational Optimization and Applica-tions, 76:649–673, 2020. DOI: 10.1007/s10589-020-00173-3.

Bento, G.C., Ferreira, O.P. and Melo. J.G. Iteration-Complexity of Gradient, Subgradientand Proximal Point Methods on Riemannian Manifolds,Journal of Optimization Theory andApplications, 173:548–562, 2017. DOI: 10.1007/s10957-017-1093-4.

Elhilali Alaoui, A. Caractrisation des fonctions D.C. (Characterization of D. C. functions),Ann. Sci. Math. Quebec, 20: 1-13, 1996.

Ferreira, O.P. and Oliveira, P.R. Proximal point algorithm on Riemannian manifolds,Opti-mization, 51:257-270, 2002. DOI:10.1080/02331930290019413.

Hiriart-Urruty, J.B. Generalized differentiabity, duality and optimization for problems dea-ling with difference of convex functions,Convexity and Duality in Optimization, 37-70, 1985.DOI:10.1007/978-3-642-45610-7−3.

Hiriart-Urruty, J.B. From convex optimization to nonconvex optimization. Necessary and suf-ficient conditions for global optimality,Nonsmooth Optimization and Related Topics, SpringerUS, chapter 13, pages 219-239, 1989.

Hiriart-Urruty, J.B. and Tuy, H. Essays on nonconvex optimization,Mathematical Program-ming, volume 41, 1988.

Li, C., L ́opez, G. and Mart ́ın-M ́arquez, V. Monotone vector fields and the proxi-mal point algorithm on Hadamard manifolds,J. Lond. Math. Soc., 79:663-683, 2009.doi:10.1112/jlms/jdn087.

Oliveira, W. and Tcheou, M. Level An inertial algorithm for DC programming,Set-Valuedand Variational Analysis, 27:895-919, 2019. DOI: 10.1007/s11228-018-0497-0.

Sakai, T.Riemannian Geometry. Translations of Mathematical Monographs, volume 149.American Mathematical Society, Providence, 1996.

Souza,J.C.O. and Oliveira,P.R. A proximal point method for DC functions on Hadamardmanifolds,Jornal of Global Optimization, 63:797-810, 2015. DOI:10.1007/s10898-015-0282-7.

Sun, W., Sampaio, R.J.B. and Candido, M.A.B. Proximal point algorithm for minimizationof DC Functions,Journal of Computational Mathematics, 21:451-462, 2003.

Toland, J.F. Duality in nonconvex optimization,Journal of Mathematical Analysis and Ap-plications, 66:399-415, 1978. DOI:10.1016/0022-247x(78)90243-3.

Udriste, C.Convex Functions and Optimization Algorithms on Riemannian Manifolds. Mathe-matics and Its Applications,297. Kluwer Academic, Dordrecht, 1994.




DOI: https://doi.org/10.5540/03.2021.008.01.0488

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato