Um algoritmo inercial para funções DC em variedades de Hadamard
DOI:
https://doi.org/10.5540/03.2021.008.01.0488Resumo
Um algoritmo de ponto proximal inercial para funções DC é apresentado no contexto devariedades de Hadamard. Se a sequˆencia gerada por nosso algoritmo é limitada, provaremos quecada ponto de acumulação ́e um ponto crítico da função objetivo.Downloads
Referências
Absil P.-A., Mahony R. and Sepulchre R.Optimization algorithms on matrix manifolds. Prin-ceton University Press, 2009.
Almeida, Y.T., Cruz Neto, J.X., Oliveira,P.R. and Souza, J.C.O. A modified proximal pointmethod for DC functions on Hadamard manifolds,Computational Optimization and Applica-tions, 76:649–673, 2020. DOI: 10.1007/s10589-020-00173-3.
Bento, G.C., Ferreira, O.P. and Melo. J.G. Iteration-Complexity of Gradient, Subgradientand Proximal Point Methods on Riemannian Manifolds,Journal of Optimization Theory andApplications, 173:548–562, 2017. DOI: 10.1007/s10957-017-1093-4.
Elhilali Alaoui, A. Caractrisation des fonctions D.C. (Characterization of D. C. functions),Ann. Sci. Math. Quebec, 20: 1-13, 1996.
Ferreira, O.P. and Oliveira, P.R. Proximal point algorithm on Riemannian manifolds,Opti-mization, 51:257-270, 2002. DOI:10.1080/02331930290019413.
Hiriart-Urruty, J.B. Generalized differentiabity, duality and optimization for problems dea-ling with difference of convex functions,Convexity and Duality in Optimization, 37-70, 1985.DOI:10.1007/978-3-642-45610-7−3.
Hiriart-Urruty, J.B. From convex optimization to nonconvex optimization. Necessary and suf-ficient conditions for global optimality,Nonsmooth Optimization and Related Topics, SpringerUS, chapter 13, pages 219-239, 1989.
Hiriart-Urruty, J.B. and Tuy, H. Essays on nonconvex optimization,Mathematical Program-ming, volume 41, 1988.
Li, C., L ́opez, G. and Mart ́ın-M ́arquez, V. Monotone vector fields and the proxi-mal point algorithm on Hadamard manifolds,J. Lond. Math. Soc., 79:663-683, 2009.doi:10.1112/jlms/jdn087.
Oliveira, W. and Tcheou, M. Level An inertial algorithm for DC programming,Set-Valuedand Variational Analysis, 27:895-919, 2019. DOI: 10.1007/s11228-018-0497-0.
Sakai, T.Riemannian Geometry. Translations of Mathematical Monographs, volume 149.American Mathematical Society, Providence, 1996.
Souza,J.C.O. and Oliveira,P.R. A proximal point method for DC functions on Hadamardmanifolds,Jornal of Global Optimization, 63:797-810, 2015. DOI:10.1007/s10898-015-0282-7.
Sun, W., Sampaio, R.J.B. and Candido, M.A.B. Proximal point algorithm for minimizationof DC Functions,Journal of Computational Mathematics, 21:451-462, 2003.
Toland, J.F. Duality in nonconvex optimization,Journal of Mathematical Analysis and Ap-plications, 66:399-415, 1978. DOI:10.1016/0022-247x(78)90243-3.
Udriste, C.Convex Functions and Optimization Algorithms on Riemannian Manifolds. Mathe-matics and Its Applications,297. Kluwer Academic, Dordrecht, 1994.