Parameter Identification in a Predator-Prey System using Persistent Homology

Sabrina S. Calcina, Marcio Gameiro

Resumo


The present work uses persistent homology combined with machine learning to identify (classify) parameters of system of equations producing complex patterns. Persistent homology is used as a tool to extract topological information from the patterns. This topological information is in turn used as features for the machine learning methods used for the classification. The method is applied to patterns generated by a predator-prey system using the SVM, PLS-DA, and the Naive Bayes machine learning methods.

Palavras-chave


Persistent homology, Parameter identification, SVM classifier, PLS-DA classifier, Naive Bayes classifier.

Texto completo:

PDF


DOI: https://doi.org/10.5540/03.2018.006.02.0444

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato