Parameter Identification in a Predator-Prey System using Persistent Homology
DOI:
https://doi.org/10.5540/03.2018.006.02.0444Palabras clave:
Persistent homology, Parameter identification, SVM classifier, PLS-DA classifier, Naive Bayes classifier.Resumen
The present work uses persistent homology combined with machine learning to identify (classify) parameters of system of equations producing complex patterns. Persistent homology is used as a tool to extract topological information from the patterns. This topological information is in turn used as features for the machine learning methods used for the classification. The method is applied to patterns generated by a predator-prey system using the SVM, PLS-DA, and the Naive Bayes machine learning methods.Descargas
Los datos de descargas todavía no están disponibles.
Descargas
Publicado
2018-12-19
Número
Sección
Trabalhos Completos