Modelo para a dinâmica do HIV com mutação

Claudia M. Dias, Dayse H. Pastore, Edilson F. Arruda

Resumo


Este trabalho apresenta um modelo de equações diferenciais e integro-diferenciais para a  dinâmica da infecção pelo vírus da imunodeficiência adquirida (HIV). Tais modelos levam em conta  os processos de mutação que o vírus sofre depois de adentrar o sistema imunológico. O objetivo é  acompanhar a evolução da dinâmica do vírus no sistema imunológico, uma vez que células de defesa  (CTL) são recrutadas para combater exclusivamente cada uma das mutações. Como essas células  não estarão disponíveis para combater diferentes cepas, é muito importante entender e modelar a  evolução das cepas a fim de prevenir o colapso do sistema imunológico.  


Palavras-chave


HIV; Modelagem Matemática; Mutação

Texto completo:

PDF

Referências


Arruda, E. F., Dias, C. M., de Magalhães, C. V., Pastore, D. H., Thomé, R. C. A., Yang, H. M. An Optimal Control Approach to HIV Immunology. Applied Mathematics, 6, 1115-1130, 2015.

Balamurali, M., Petravic, J., Loh, L., Alcantara, S., Kent, S. J., Davenport, M. P. Does cytolysis by CD8+ T cells drive immune escape in HIV infection?, The Journal o f Immunology, 185 (9), 5093-5101, 2010.

Bouin, E., Garnier, J., Henderson, C., Patout, F. Thin Front Limit of an Integro-differential Fisher-KPP Equation with Fat-Tailed Kernels. SIAM Journal on Mathematical Analysis, 50(3), 3365-3394. 2018. DOI: 10.1137/17M1132501

Chun, T., Carruth, L., Finzi, D., Shen, X., Digiuseppe, J., Taylor, H., Hermankova, M., Chadwick, K., Margolick, J., Kuo, Y., Brookmeyer, R., Zeiger, M., Barditch-Crovo, P., Silici- ano, R. Quantification of latente tissue reservoirs and total body virai load in HIV-1 infection. Nature, 387, 183-188, 1997.

Daugas, E., Rougier, J. HAART-related nephropathies in HIV-infected patients. Kidney International, 67, 393-403, 2005.

De Boer, R.J. Mathematical models of human CD4 T-cell population kinetics. Neth J Med, 60, 17-26, 2002.

Dorf, R. C., Bishop, R. H.Modem Control Systems, 9th Edition. Prentice Hall, 2001.

Eisele, E., Siliciano, R. Redefining the virai reservoirs that prevent HIV-1 eradication. Immunity, 37 (3), 377-388, 2012.

Finzi, D., Blankson, J., Siliciano, J., Margolick, J., Chadwick, K., Pierson, T., Smith, K., Lisziewicz, J., Lori, F., Flexner, C., Quinn, T., Chaisson, R., Rosenberg, E., Walker, B., Gange, S., Gallant, J., Siliciano, R. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med, 5 (5), 512-517, 1999.

Frid, H., Jabin, P-E., Perthame, P. Global stability of steady solutons for a model in virus dynamics. ESAIM: Mathematical Modelling and Numerical Analysis, 37 (4) 709 -723, 2003.

Grégio, J., Caetano, M., Yoneyama, T. State estimation and optimal long period clinicai treatment of HIV seropositive patients. Anais da Academia Brasileira de Ciências, 81, 3-12, 2009.

Ho, P., Neumann, A., Perelson, A., Chew, W., Leonardo, J., Markowitz, M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123-126, 1995.

Kilby, J. M, Goepfert, P. A., Miller, A. P., Gnann Jr, J. W., Sillers, M., Saag, M. S., Bucy, R. P. Recurrence of the acute HIV syndrome after interruption of antiretroviral therapy in a patient with chronic HIV infection: a case report. Ann Intern Med, 133, 435-438, 2000. DOI: 10.7326/0003-4819-133-6.

Kirk, D. Optimal control theory: An introduction. Prentice-Hall, 1970.

Kreysig, E. Introductory Functional Analysis with Applications. Wiley, 1978.

Lafeuillade, A., Poggi, C., Profizi, N. Human immunodeficiency virus type 1 in lymph nodes compared with plasma. J.Infect. Dis., 174, 404-407, 1996.

Lewis, F., Syrmos, V. Optimal Control. John Wiley and Sons, 1995.

Mclean, A. Infectious disease modeling. In: Kanki, P., Grmes, D. J. (Eds.), Infectious Diseases. Springer, New York, 99-115, 2013.

Nowak, M., Bangham, C. Population dynamics of immune responses to persistent viruses. Science, 272 (5258), 74-79, 1996.

Nowak, M., May, R. Virus dynamics: Mathematical principies of immunology and virology. Oxford University Press, Oxford, 2000.

Pastore, D. On the numerical simulation of a class of HIV models. Mathematical and Computer Modelling, 47 (7), 2008.

Pastore, D. H., Thomé, R. C. A., Dias, C. M., Arruda, E. F., Yang, H. M. A model for interactions between immune cells and HIV considering drug treatments. Comp. Appl. Math., 37 (1), 282-295, 2018.

Perelson, A. Modelling virai and immune system dynamics. Nat Rev Immunol, 2, 28-36, 2002.

Perelson, A., Nelson, P. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41 (1), 3-44, 1999.

Perelson, A., Ribeiro, R. Modeling the within-host dynamics of HIV infection. BMC Biology, 11 (1), 96, 2013.

Pontryagin, L., Boltyanskij, V., GamKrelidze, R., Mishchenko, E. The Mathematical Theory of Optimal Processes. Interscience Publishers, New York, 1961.

Siewe, B., Wallace, J., Rygielski, S., Stapleton, J. T., Martin, J., Deeks, S. G., Landay, A. Regulatory B cells inhibit cytotoxic t lymphocyte (CTL) activity and elimination of infected CD4 T cells after in vitro reactivation of HIV latent reservoirs. PLoS ONE, 9 (4), 2014.

Sreenivasan, S., Dasegowda, V. Adverse effects after HAART initiation in resource-limited settings: a prospective study from Mysore, índia. J Infect Dev Ctries, 4 (11), 750-753, 2010.

Shu, H., Wang, L., Watmough, J. Sustained and transient oscillations and chãos induced by delayed antiviral immune response in an immunosuppressive infection model. J Math Biol, 68, 477-503, 2014.

Torres, R., Lewis, W. Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Laboratory Investigation, 94, 120-128, 2014




DOI: https://doi.org/10.5540/03.2021.008.01.0446

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato