Fractional differential equations: Ulam-Hyers stabilities

Autores

  • J. Vanterler da C. Sousa
  • E. Capelas de Oliveira

DOI:

https://doi.org/10.5540/03.2021.008.01.0415

Palavras-chave:

Fractional nonlinear abstract Cauchy, Ulam-Hyers stabilities, mild solution, Banach fixed point theorem.

Resumo

Since the first work on Ulam-Hyers stabilities of differential equation solutions to date, many important and relevant papers have been published, both in the sense of integer order and fractional order  differential  equations.  However,  when  we  enter  the  field  of  fractional  calculus,  in  particular,  involving fractional  differential  equations,  the  path  that  is  still  long  to  be traveled,  although there is a range of published works. In this sense, in this paper, we will investigate the  Ulam-Hyers and Ulam-Hyers-Rassias stabilities of mild solutions of the fractional nonlinear abstract  Cauchy problem in the intervals [0, T] and [0, oo) , by means of Banach’s fixed point theorem.

Downloads

Não há dados estatísticos.

Biografia do Autor

J. Vanterler da C. Sousa

Department of Applied Mathematics, Imecc-Unicamp, 13083-859, Campinas, SP, Brazil

E. Capelas de Oliveira

Department of Applied Mathematics, Imecc-Unicamp, 13083-859, Campinas, SP, Brazil

Referências

Gu, H. and Trujillo, J. J., Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 2015, 257:344-354.

Saadati, R., Pourhadi, E., Samet, B., On the PC-mild solutions of abstract fractional evolution equations with non-instantaneous impulses via the measure of noncompactness, Bound. Value ProbL, 2019, 2019:1.

Sousa, J. Vanterler da C., Kucche, K. D., Oliveira, E. Capelas de, Ulam-Hyers stabilities of mild solutions of the fractional nonlinear abstract Cauchy problem, Nonauton. Dyn. Sys., (Submitted) (2019).

Sousa, J. Vanterler da C., Kucche, K. D., Oliveira, E. Capelas de, Stability of -0-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 2019, 88:73-80.

Sousa, J. Vanterler da C., Oliveira, E. Capelas de , On the -0-Hilfer fractional derivative, Commun. Nonlinear Sei. Numer. Simulat., 2018, 60:72-91.

Sousa, J. Vanterler da C., Oliveira, E. Capelas de , Leibniz type rule: -0-Hilfer fractional operator, Commun. Nonlinear Sei. Numer. SimuL, 2019, 77:305-311.

Sousa, J. Vanterler da C., Existence of mild solutions to Hilfer fractional evolution equations in Banach space, arXiv:1812.02213, (2018).

Sousa, J. Vanterler da C., Oliveira, D. S., Oliveira, E. Capelas de, A note on the mild solutions of Hilfer impulsive fractional differential equations, Chãos, Solitons, & Fractals, 2021, 147, 110944.

Ulam, S. M., A collection of mathematical problems, 8 (1960).

Wang, J., Zhou, Y., Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett., 2012, 25(4):723-728

Zhou, Y., Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3): 1063-1077.

Downloads

Publicado

2021-12-20

Edição

Seção

Trabalhos Completos