Fractional differential equations: Ulam-Hyers stabilities
DOI:
https://doi.org/10.5540/03.2021.008.01.0415Palabras clave:
Fractional nonlinear abstract Cauchy, Ulam-Hyers stabilities, mild solution, Banach fixed point theorem.Resumen
Since the first work on Ulam-Hyers stabilities of differential equation solutions to date, many important and relevant papers have been published, both in the sense of integer order and fractional order differential equations. However, when we enter the field of fractional calculus, in particular, involving fractional differential equations, the path that is still long to be traveled, although there is a range of published works. In this sense, in this paper, we will investigate the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of mild solutions of the fractional nonlinear abstract Cauchy problem in the intervals [0, T] and [0, oo) , by means of Banach’s fixed point theorem.
Descargas
Citas
Gu, H. and Trujillo, J. J., Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 2015, 257:344-354.
Saadati, R., Pourhadi, E., Samet, B., On the PC-mild solutions of abstract fractional evolution equations with non-instantaneous impulses via the measure of noncompactness, Bound. Value ProbL, 2019, 2019:1.
Sousa, J. Vanterler da C., Kucche, K. D., Oliveira, E. Capelas de, Ulam-Hyers stabilities of mild solutions of the fractional nonlinear abstract Cauchy problem, Nonauton. Dyn. Sys., (Submitted) (2019).
Sousa, J. Vanterler da C., Kucche, K. D., Oliveira, E. Capelas de, Stability of -0-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 2019, 88:73-80.
Sousa, J. Vanterler da C., Oliveira, E. Capelas de , On the -0-Hilfer fractional derivative, Commun. Nonlinear Sei. Numer. Simulat., 2018, 60:72-91.
Sousa, J. Vanterler da C., Oliveira, E. Capelas de , Leibniz type rule: -0-Hilfer fractional operator, Commun. Nonlinear Sei. Numer. SimuL, 2019, 77:305-311.
Sousa, J. Vanterler da C., Existence of mild solutions to Hilfer fractional evolution equations in Banach space, arXiv:1812.02213, (2018).
Sousa, J. Vanterler da C., Oliveira, D. S., Oliveira, E. Capelas de, A note on the mild solutions of Hilfer impulsive fractional differential equations, Chãos, Solitons, & Fractals, 2021, 147, 110944.
Ulam, S. M., A collection of mathematical problems, 8 (1960).
Wang, J., Zhou, Y., Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett., 2012, 25(4):723-728
Zhou, Y., Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3): 1063-1077.