On attractivity of solutions of fractional differential equations

J. Vanterler da C. Sousa, E. Capelas de Oliveira

Resumo


In this work, we investigate the existence of a class of globally attractive solutions of the Cauchy fractional problem with the ψHilfer fractional derivative using the measure of noncompactness.


Palavras-chave


Fractional differential equations, ψHilfer fractional derivative; attractivity; measure noncompactness.

Texto completo:

PDF (English)

Referências


Banas, J. and O’Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345(1) (2008) 573-582.

Chang, Y.-K. and Ponce, R. and Rueda, S., Fractional differential equa- tions of Sobolev type with sectorial operators, Semigroup Fórum, (2019) 1-16, doi.org/10.1007/s00233-019-10038-9.

Chen, Fulai and Nieto, Juan J and Zhou, Yong, Global attractivity for nonlinear fractional differential equations, Nonlinear Analysis, 13(1) (2012) 287-298.

Gu, H. and Trujillo, J. J., Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015) 344-354.

Sousa, J. Vanterler da C. and Oliveira, E. Capelas de, On the ψHilfer fractional derivative, Commun. Nonlinear Sei. Numer. SimuL, 60 (2018) 72-91.

Sousa, J. Vanterler da C. and Oliveira, E. Capelas de, Ulam-Hyers stability of a non­linear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018) 50-56.

Sousa, J. Vanterler da C. and Kucche, K. D. and Oliveira, E. Capelas de, Stability of ψHilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019) 73-80.

Sousa, J Vanterler da C. and Oliveira, E. Capelas de, Leibniz type rule: ψHilfer fractional operator, Commun. Nonlinear Sei. Numer. SimuL, 77 (2019) 305-311.

Sousa, J Vanterler da C. and O’Regan, D. and Oliveira, E. Capelas de, On attractivity for ψHilfer fractional differential equations systems, Acta Applicandae Mathemati- cae, (Submitted) (2020).

Zhou, Y., Attractivity for fractional differential equations in Banach space, Appl. Math. Lett., 75 (2018) 1-6.

Zhou, Y., Basic Theory of Fractional Differential Equations World Scientific Publish- ing Company, Singapore, New Jersey, London and Hong Kong (2014).




DOI: https://doi.org/10.5540/03.2021.008.01.0455

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato