On attractivity of solutions of fractional differential equations
DOI:
https://doi.org/10.5540/03.2021.008.01.0455Keywords:
Fractional differential equations, ψHilfer fractional derivative, attractivity, measure noncompactness.Abstract
In this work, we investigate the existence of a class of globally attractive solutions of the Cauchy fractional problem with the ψHilfer fractional derivative using the measure of noncompactness.
Downloads
References
Banas, J. and O’Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345(1) (2008) 573-582.
Chang, Y.-K. and Ponce, R. and Rueda, S., Fractional differential equa- tions of Sobolev type with sectorial operators, Semigroup Fórum, (2019) 1-16, doi.org/10.1007/s00233-019-10038-9.
Chen, Fulai and Nieto, Juan J and Zhou, Yong, Global attractivity for nonlinear fractional differential equations, Nonlinear Analysis, 13(1) (2012) 287-298.
Gu, H. and Trujillo, J. J., Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015) 344-354.
Sousa, J. Vanterler da C. and Oliveira, E. Capelas de, On the ψHilfer fractional derivative, Commun. Nonlinear Sei. Numer. SimuL, 60 (2018) 72-91.
Sousa, J. Vanterler da C. and Oliveira, E. Capelas de, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018) 50-56.
Sousa, J. Vanterler da C. and Kucche, K. D. and Oliveira, E. Capelas de, Stability of ψHilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019) 73-80.
Sousa, J Vanterler da C. and Oliveira, E. Capelas de, Leibniz type rule: ψHilfer fractional operator, Commun. Nonlinear Sei. Numer. SimuL, 77 (2019) 305-311.
Sousa, J Vanterler da C. and O’Regan, D. and Oliveira, E. Capelas de, On attractivity for ψHilfer fractional differential equations systems, Acta Applicandae Mathemati- cae, (Submitted) (2020).
Zhou, Y., Attractivity for fractional differential equations in Banach space, Appl. Math. Lett., 75 (2018) 1-6.
Zhou, Y., Basic Theory of Fractional Differential Equations World Scientific Publish- ing Company, Singapore, New Jersey, London and Hong Kong (2014).