Tuning Method in the Implementation Fuzzy ADRC Controllers for a Mass-Spring-Damper System: An approach

Autores

  • Lucas D. da Silva
  • Walter M. Rodrigues
  • Nathan R. da Silva
  • Maxwell C. Jácome
  • Andres O. Salazar
  • Elmer R. L. Villarreal

DOI:

https://doi.org/10.5540/03.2023.010.01.0107

Palavras-chave:

Control ADRC, Control Fuzzy ADRC, Mass-Spring-Damper System, Second Order Differential Equation

Resumo

This article presents a new approach that describes a mass-spring-damper system as a second-order system. Thus, the first part implements the Active Disturbance Rejection Control ( ADRC) controller, and then the implementation of the fuzzy ADRC controller will be simplified by the tuning technique. The article also presents a simulation of the mass-spring-damper system using the output plant transfer function. The paper implements a controller to control the closed-loop system. Finally, a graphical comparison of the respective controllers is shown in the mass-spring-damper system.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lucas D. da Silva

Engenharia Mecânica Centro de Engenharias, Universidade Federal Rural do Semi-árido EM/UFERSA, Mossoró, RN.

Walter M. Rodrigues

Departamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-árido, DCME/UFERSA, Mossoró, RN.

Nathan R. da Silva

Engenharia Elétrica Centro de Engenharias , Universidade Federal Rural do Semi-árido EM/UFERSA, Mossoró, RN.

Maxwell C. Jácome

Instituto Federal Institute de Rio Grande do Norte, IFRN, Campus João Câmara, Campus João Câmara, RN.

Andres O. Salazar

Departamento de Engenharia de Computação e Automação, Universidade Federal do Rio Grande do Norte DCA/UFRN, Natal, RN

Elmer R. L. Villarreal

Departamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-árido DCME/UFERSA, Mossoró, RN.

Referências

T. Aoki, Y. Yamashita, and D. Tsubakino. “Vibration Suppression of Mass-Spring-Damper System with Dynamic Dampers using IDA-PBC”. In: IFAC Proceedings Volumes 45(1) (2012), pp. 42–47. dOI: /10.3182/20120829-3-IT-4022.00021.

Y. Fan et al. “Active Disturbance Rejection Control Design Using the Optimization Algorithm for a Hydraulic Quadruped Robot”. In: Computational Intelligence and Neuroscience ID 6683584 (2021), pp. 1–22. dOI: 10.1155/2021/6683584..

K. Miyamoto et al. “Active Structural Control of Base-Isolated Building Using Equivalent- Input-Disturbance Approach With Reduced-Order State Observer”. In: J. Dyn. Syst. Meas. Control 144 (9) (2022), pp. 1–14. dOI: 10.1115/1.4054819.

S. M. Savaresi et al. Semi-Active Suspension Control Design for Vehicles. Elsevier Science, 2010. ISBn: 9780080966793.

W. L. D. Silva et al. “Radial Position Control of a Bearingless Machine with Active Dis- turbance Rejection Control Fuzzy an approach”. In: XXVII International Conference on Electronics, Electrical Engineering and computings (IEEE-INTERCON 2020), Peru 1 (2020), pp. 1–4. dOI: 10.1109/INTERCON50315.2020.9220221.

W. L. D. Silva et al. “Radial Position Control of a Bearingless Machine with Active Distur- bance Rejection Control Fuzzy an approach”. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA) 1 (2021), pp. 1–4. dOI: 10.1109/ICAACCA51523.2021.9465177.

H. Zhang, S. Zhao, and Z. Gao. “An active disturbance rejection control solution for the two-mass-spring benchmark problem”. In: 2016 American Control Conference (ACC) 1 (2016), pp. 1566–1571. dOI: 10.1109/ACC.2016.7525139.

Downloads

Publicado

2023-12-18

Edição

Seção

Trabalhos Completos