Correlation between image quality measurement of diferente image enhancement algorithms and Cascade R-CNN detection results applied to teeth detection in panoramic X-Ray images
Abstract
Automatic teeth detection and segmentation in dental radiographs play a significant part inforensic identification and are considered the first step towards more complex systems for oralhealthcare [3]. [...]
Downloads
References
Barash. D. Bilateral Filtering and Anisotropic Difusion: Towards a Unified Viewpoint,Scale-Space and Morphology in Computer Vision, volume 2106, 2001. DOI: 10.1007/3-540-47778-024.
Cai, Z. and Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and InstanceSegmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:1483–1498, 2019. DOI: 10.1109/TPAMI.2019.2956516
Chen, H., Zhang, K., Lyu, P., Li, H., Zhang, L., Wu, J. and Lee, C. A deep learning approachto automatic teeth detection and numbering based on object detection in dental periapicalfilms,Scientific Reports, 9, 2019. DOI: 10.1038/s41598-019-40414-y.
Mello, J. C., Fretes, V. R., Adorno, C. G., Gariba, R. V ́azquez, J. L., Legal-Ayala, H., Mello-Rom ́an, J. D., Escobar, R. D. and Facon, J., Panoramic Dental Radiography Image Enhance-ment Using Multiscale Mathematical Morphology,Sensors, 21, 2001. DOI: 10.3390/s21093110.
Schwendicke, F., Golla, T., Dreher, M. and Krois, J. Convolutional neural networksfor dental image diagnostics: A scoping review,Journal of Dentistry, 91, 2019. DOI:10.1016/j.jdent.2019.103226.
Silva, G, Oliveira, L., and Pithon, M. Automatic segmenting teeth in X-ray images: Trends,a novel data set, benchmarking and future perspectives,Expert Systems with Applications,107:15–31, 2018. DOI: 10.1016/j.eswa.2018.04.001.