Critério de Routh-Hurwitz em Modelos Epidemiológicos

Authors

  • Natanael de J. Oliveira
  • Patrícia N. da Silva

Abstract

Segundo Brauer, Castillo-Chavez e Feng [1], modelos compartimentais são utilizados em muitas áreas como: ecologia, industria, epidemiologia e outros. Utilizaremos estes modelos para a transmissão de doenças.  [...]

Downloads

Download data is not yet available.

Author Biographies

Natanael de J. Oliveira

UERJ, Rio de Janeiro, RJ

Patrícia N. da Silva

UERJ, Rio de Janeiro, RJ

References

F. Brauer, C. Castillo-Chavez e Z. Feng. Mathematical Models in Epidemiology. Texts in Applied Mathematics. New York: Springer, 2019. isbn: 9781493998289.

Herbert W. Hethcote. “Qualitative analyses of communicable disease models”. Em: Mathematical Biosciences 28.3 (1976), pp. 335–356. issn: 0025-5564. doi: https://doi.org/10. 1016/0025-5564(76)90132-2.

W.O. Kermack e A.G. McKendrick. “Contributions to the mathematical theory of epidemics— II. the problem of endemicity”. Em: Bulletin of Mathematical Biology 53.1 (1991). Reprinted from the Proceedings of the Royal Society, Vol. 138A, pp. 55–83 (1932) with the permission of The Royal Society., pp. 57–87. issn: 0092-8240. doi: https://doi.org/10. 1016/S0092-8240(05)80041-2.

E.J. Routh. A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. Macmillan e Company, 1877.

Published

2022-12-08

Issue

Section

Resumos