On the Spread of the Wildfire with a Time-space-varying Wind

Authors

  • Hengameh R. Dehkordi CMCC

DOI:

https://doi.org/10.5540/03.2025.011.01.0452

Keywords:

Randers metric, firefront, time-space-varying wind, strategic path, blocking problem.

Abstract

In this paper, we present the model of wildfire propagation in flat terrain under the influence of a time-space-varying wind. We outline the methodology through systematic steps, facilitating the model development. Using the MATLAB environment, we simulate multiple experimental wildfire scenarios to demonstrate the practical application of our results in addressing real-world problems. Our results offer insights into determining optimal locations for constructing barriers to mitigate fire spread, known as the blocking problem. Implementation of our results can lead to reductions in the area affected by fire and decreased operational time and cost.

Downloads

Download data is not yet available.

Author Biography

Hengameh R. Dehkordi, CMCC

Researcher at CMCC, focusing on wildfire propagation modeling.

References

D. H. Anderson, E. A. Catchpole, N. J. De Mestre, and T. Parkes. “Modelling the spread of grass fires”. In: J. Aust. Math. Soc. Series B, Appl. math 23.4 (1982), pp. 451–466.

D. Bao, C. Robles, and Z. Shen. “Zermelo navigation on Riemannian manifolds”. In: J. Differ. Geom. 66.3 (2004), pp. 377–435.

A. Bressan. “Dynamic blocking problems for a model of fire propagation”. In: Adv. Comput. Math. Springer, 2013, pp. 11–40.

A. Bressan and M. T. Chiri. “On the regularity of optimal dynamic blocking strategies”. In: Calc. Var. Partial Differ. Equ. 61.1 (2022), p. 36.

H. R Dehkordi. “Applications of Randers geodesics for wildfire spread modelling”. In: Appl. Math. Model (2022).

H. R. Dehkordi. “Applications of Randers metric to track the paths through which the fire surrounds the power transmission lines”. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics 10.1 (2023), pp. 2–7.

H. R. Dehkordi and A. Saa. “Huygens’ envelope principle in Finsler spaces and analogue gravity”. In: Class. Quantum Grav. 36.8 (2019), p. 085008.

M. A. Finney. FARSITE: Fire Area Simulator–model development and evaluation. 4. USDA Forest Service, Res. Pap. RMRS-RP-4, Rocky Mountain Research Station, Ogden, UT, 1998 (Revised 2004).

M. A Javaloyes, E. Pendás-Recondo, and M. Sánchez. “A General Model for Wildfire Propagation with Wind and Slope”. In: SIAM J. Appl. Algebra Geom 7.2 (2023), pp. 414–439.

M. A Javaloyes, E. Pendás-Recondo, and M. Sánchez. “Applications of cone structures to the anisotropic Rheonomic Huygens’ principle”. In: Nonlinear Anal. 209 (2021), p. 112337.

J. M Lee. Introduction to Riemannian manifolds. Springer International Publishing, New York, 2018.

S. Markvorsen. “A Finsler geodesic spray paradigm for wildfire spread modelling”. In: Nonlinear Anal.: Real World Appl. 28 (2016), pp. 208–228.

S. Markvorsen. “Geodesic sprays and frozen metrics in Rheonomic Lagrange manifolds”. In: arXiv preprint arXiv:1708.07350 (2017).

R. C. Rothermel. A mathematical model for predicting fire spread in wildland fuels. Vol. 115. Intermountain Forest & Range Experiment Station, Forest Service, US, 1972.

Z. Shen. Lectures on Finsler geometry. World Scientific, Singapore, 2001.

Downloads

Published

2025-01-20

Issue

Section

Trabalhos Completos