Homoclinic Orbits in the Modified Van der Pol System

Authors

  • Amaury S. Amaral Pontifícia Universidade Católica de São Paulo (PUC-SP)
  • Segundo P. Milián Instituto de Física Teórica (IFT-UNESP)

DOI:

https://doi.org/10.5540/03.2025.011.01.0405

Keywords:

Homoclinic orbits, Van der Pol system, Shilnikov theorem, Non linear system

Abstract

This work studies a three non-linear ordinary differential equation system, depending on a set of eight parameters, which describes an economic model. The set of parameters are constrained in order to satisfy the Shilnikov Theorem, this is required when looking for the conditions for the existence of homoclinic orbits in a three-dimensional autonomous system.

Downloads

Download data is not yet available.

References

A. S. Amaral, V. E. Camargo, A. F. Crepaldi, and F. F. Ferreira. “Interaction between economies in a business cycle model”. In: Chaos, Solitons & Fractals 155 (2022), p. 111672.

G. Bella, P. Mattana, and B. Venturi. “Shilnikov chaos in the Lucas model of endogenous growth”. In: Journal of Economic Theory 172 (2017), pp. 451–477.

S. Bouali. “Feedback loop in extended Van der Pol’s equation applied to an economic model of cycles”. In: International Journal of Bifurcation and Chaos 9.04 (1999), pp. 745–756.

B. Chen and T. Zhou. “ŠIL’NIKOV Homoclinic Orbits in Two Classes of 3d Autonomous Non-linear Systems”. In: International Journal of Modern Physics B 25.20 (2011), pp. 2697–2712.

L. Pribylova. “Bifurcation routes to chaos in an extended Van der Pol’s equation applied to economic models.” In: Electronic Journal of Differential Equations (EJDE)[electronic only] 2009 (2009), Paper–No.

D. Shang and M. Han. “The existence of homoclinic orbits to saddle-focus”. In: Applied Mathematics and Computation 163.2 (2005), pp. 621–631.

L. P. Šilnikov. “A case of the existence of a denumerable set of periodic motions”. In: Sov. Math. Dokl. Vol. 6. 1965, pp. 163–166.

Ch. P. Silva. “Shil’nikov’s theorem-a tutorial”. In: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40.10 (1993), pp. 675–682.

B. Van der Pol. “LXXXVIII. On “relaxation-oscillations””. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11 (1926), pp. 978–992.

M. Vosvrda et al. “Bifurcation routes and economic stability”. In: 7th International Conference of the Society for Computational Economics. Yale University. 2001, pp. 28–30.

Downloads

Published

2025-01-20

Issue

Section

Trabalhos Completos