Comparative analysis of scaling techniques for AIM matrices in reservoir flow equations

Authors

  • Pedro C. da S. Lara CEFET-RJ
  • José R. P. Rodrigues CENPES
  • Cesar A. C. Perez CMG, Calgary, Canada
  • Luiz M. Carvalho UERJ
  • Paulo Goldfeld UFRJ

DOI:

https://doi.org/10.5540/03.2026.012.01.0263

Keywords:

Scaling Techniques, Iterative Solvers, Reservoir Simulation, Adaptive Implicit Method

Abstract

Scaling improves the performance of iterative solvers for large, sparse linear systems by enhancing conditioning and balancing row and column magnitudes. This work highlights a tailored scaling approach for linear systems arising from Adaptive Implicit Method (AIM) discretization in multiphase porous media flow equations. The method focuses on conditioning implicit equations to reduce computational costs and improve solver efficiency. We compare this approach with general algorithms, such as Sinkhorn-Knopp and Ruiz, using the GMRES solver. Results show that the tailored method enhances convergence and outperforms general-purpose techniques in reservoir simulation, highlighting the benefits of problem-specific scaling strategies in large-scale simulations.

Downloads

Download data is not yet available.

References

N. J. Higham, S. Pranesh, and M. Zounon. “Squeezing a Matrix into Half Precision, with an Application to Solving Linear Systems”. In: SIAM Journal on Scientific Computing 41.4 (2019), A2536–A2551. issn: 1064-8275. doi: 10.1137/18M1229511.

P. A. Knight and D. Ruiz. “A fast algorithm for matrix balancing”. In: IMA J. of Num. Analysis 33.3 (2012), pp. 1029–1047. issn: 0272-4979. doi: 10.1093/imanum/drs019.

P. A. Knight and D. Ruiz. “A symmetry preserving algorithm for matrix scaling”. In: SIAM Journal on Matrix Analysis and Applications 35.3 (2013), pp. 931–955. issn: 0895-4798. doi: 10.1137/110825753.

Y. Saad. “ILUT: A dual threshold incomplete LU factorization”. In: Numer. Linear Algebra Appl. 1 (1994), pp. 387–402. issn: 1070-5325. doi: 10.1002/nla.1680010405.

Y. Saad and M. H. Schultz. “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”. In: SIAM J. Sci. Stat. Comput. 7.3 (1986), pp. 856–869. issn: 0196-5204. doi: 10.1137/0907058.

R. Sinkhorn and P. Knopp. “Concerning nonnegative matrices and doubly stochastic matrices”. In: Pacific Journal of Mathematics 21.2 (1967), pp. 343–348. issn: 0030-8730. doi: 10.2140/pjm.1967.21.343.

H. A. van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and Statistical Computing 13.2 (1992), pp. 631–644. issn: 0196-5204. doi: 10.1137/0913035.

Downloads

Published

2026-02-13

Issue

Section

Trabalhos Completos