An Approximate Model for Planning Phase of Maritime SAR

Authors

  • Hengameh R. Dehkordi UFABC

DOI:

https://doi.org/10.5540/03.2026.012.01.0245

Keywords:

Finsler Metric, SAR Problem, Geodesics, Total Drift

Abstract

This work applies advanced mathematical tools to address the planning phase of maritime Search and Rescue problems. We use Randers, Lorentz-Finsler, and Kropina metrics to predict the paths of survivors or debris after a shipwreck or an incident at sea. Applying Finsler metric techniques to SAR models could enhance the accuracy of object drift predictions. Since Finsler metrics naturally arise in problems involving anisotropic media, such as ocean currents and wind, they are well-suited for optimizing drift predictions. To demonstrate the applicability of the proposed model in the planning phase of SAR problems, one example is implemented in MATLAB.

Downloads

Download data is not yet available.

References

A. A. Allen. The leeway of Cuban refugee rafts and a commercial fishing vessel. Tech. rep. US Coast Guard, Office of Research and Development, 1996.

E. Anderson, A. Odulo, and M. Spaulding. Modeling of Leeway drift. US Coast Guard Research and Development Center. Tech. rep. Report No. CG-D-06-99, 1998.

Ø. Breivik and A. A. Allen. “An operational search and rescue model for the Norwegian Sea and the North Sea”. In: Journal of Marine Systems 69.1-2 (2008), pp. 99–113.

Coast Guard Washington DC. US Coast Guard Addendum to the United States National Search and Rescue Supplement (NSS) to IAMSAR. Tech. rep. 2009.

H. R. Dehkordi. “Applications of Randers geodesics for wildfire spread modelling”. In: Applied Mathematical Modelling 106 (2022), pp. 45–59.

H. R. Dehkordi, M. Richartz, and A. Saa. “Wind-Finslerian structure of black holes”. In: Physical Review D 112.2 (2025), p. 024004.

H. R. Dehkordi and A. Saa. “Huygens’ envelope principle in Finsler spaces and analogue gravity”. In: Class. Quantum Grav. 36.8 (2019), p. 085008.

M. A. Javaloyes, E. Pendás-Recondo, and M. Sánchez. “An Account on Links Between Finsler and Lorentz Geometries for Riemannian Geometers”. In: Springer, 2023, pp. 259–303.

P. Kopacz. “Application of planar Randers geodesics with river-type perturbation in search models”. In: Appl. Math. Model. 49 (2017), pp. 531–553.

S. Rangarajan and C. H. Mehta. “Search area analysis of exploration drilling for hydrocarbons”. In: Geophysics 45.1 (1980), pp. 94–108.

S. V. Sabau, K. Shibuya, and R. Yoshikawa. “Geodesics on strong Kropina manifolds”. In: European Journal of Mathematics 3 (2017), pp. 1172–1224.

Z. Shen. “Finsler metrics with K= 0 and S= 0”. In: CJM 55.1 (2003), pp. 112–132.

Z. Shen. Lectures on Finsler geometry. World Scientific, Singapore, 2001.

J. Wu, L. Cheng, and S. Chu. “Modeling the leeway drift characteristics of persons-in-water at a sea-area scale in the seas of China”. In: Ocean engineering 270 (2023), p. 113444.

E. Zermelo. “Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung”. In: Zeitschrift für Angewandte Mathematik und Mechanik 11.2 (1931).

Downloads

Published

2026-02-13

Issue

Section

Trabalhos Completos