Graph Invertibility based on Drazin Invers
Resumen
LetG= (V(G), E(G)) be a graph with vertex setV(G) ={v1, ..., vn}and edge setE(G). Inthis work, graphs may contain loops (edges that connects a vertex to itself) but no multiple edges.A weighted graph is a graph in which a number (the weight) is assigned to each edge. Let(G, w) be a weighted graph, wherew:E(G)→R\ {0}is the function that assigns weights tothe edges. The weighted adjacency matrix of (G, w) isA(G, w) = [aij], whereaij=w(vivj) ifvivj∈E(G) andaij= 0 otherwise. If the weight of each edge is equal to one thenA(G, w) is thestandard adjacency matrix of the graphG, denoted byA(G). [...]Descargas
Los datos de descargas todavía no están disponibles.
Citas
Campbell, S. L. and Meyer, C. D.Generalized inverses of linear transformations. Society forindustrial and applied Mathematics, 2009.
Godsil, C. D. Inverses of trees,Combinatorica, 5:33-39, 1985. DOI:10.1007/BF02579440.
McLeman, C. and McNicholas, E. Graph Invertibility.Graphs and Combinatorics, 30:977-1002, 2014. DOI:10.1007/s00373-013-1319-7.
Yang, Y. and Ye, D. Inverses of bipartite graphs.Combinatorica, 38:1251-1263, 2018. DOI:10.1007/s00493-016-3502-y.[5] Ye, D., Yang, Y., Mandal, B. and Klein, D. J. Graph invertibility and median eigenvalues,Linear Algebra and its Applications, 513:304-323, 2017. DOI:10.1016/j.laa.2016.10.020.
Descargas
Publicado
2021-12-20
Número
Sección
Resumos