Modelagem Fracionária da dinâmica da COVID-19
DOI:
https://doi.org/10.5540/03.2022.009.01.0275Palabras clave:
COVID-19, Equações Diferenciais Ordinárias, Equações Diferenciais Fracionárias, Estimação de Parâmetros, Modelagem Fracionária, Modelagem Matemática.Resumen
Este trabalho apresenta uma revisão de modelos matemáticos que tratam da dinâmica do espalhamento da COVID-19, além disso apresenta aspectos gerais da teoria do Cálculo de Ordem Não Inteira, tradicionalmente conhecido como Cálculo Fracionário (CF), incluindo métodos numéricos e estratégias computacionais de estimação de parâmetros. Desta forma, a presente dissertação propõe o modelo SAIRD (suscetíveis-assintomáticos-sintomáticos-recuperados-mortos). Neste modelo, a partir de medidas estatísticas, como erro quadrático médio (EQM), o coeficiente de correlação intraclasse (ICC) e o erro percentual absoluto médio (MAPE), avaliamos que as estratégias computacionais fracionárias se mostraram qualitativamente mais precisas que as clássicas.
Descargas
Citas
I. Chakraborty e P. Maity. “COVID-19 outbreak: Migration, effects on society, global environment and prevention”. Em: Science of the Total Environment 728 (2020), pp. 1–7. url:
https://doi.org/10.1016/j.scitotenv.2020.138882.
L. Chicchi et al. “First results with a SEIRD model. Quantifying the population of asymptomatic individuals in Italy”. Em: Preprint (2020).
Wesley Cota. “Monitoring the number of COVID-19 cases and deaths in Brazil at municipal and federative units level”. Em: SciELOPreprints:362 (mai. de 2020). doi: 10.1590/
scielopreprints.362.
Ministério da Saúde. https://covid.saude.gov.br/. Acessado em 05/12/2021.
P. Rohani e M. Keeling. Modeling Infectious Diseases in Humans and Animals. Vol. 1.
Princeton, New Jersey: Princeton University Press, 2008.
Y. C. Wu e Y. J. Chan. “The outbreak of COVID-19: An overview”. Em: Journal of Chinese
Medical Association 83 (2020), pp. 217–220. doi: 10.1016/j.biopha.2020.110493.