Modelagem do Efeito da Redução da Taxa de Comunicação em Aparelhos Auditivos Biauriculares

Autores/as

  • Vitor P. Curtarelli
  • Márcio H. Costa

DOI:

https://doi.org/10.5540/03.2023.010.01.0068

Palabras clave:

Aparelho auditivo, Redução de ruído, Taxa de comunicação, Quantização, Saturação

Resumen

Aparelhos auditivos biauriculares têm como objetivo a compensação de limitações na audição humana. Consistem em dois dispositivos de amplificação sonora posicionados nas orelhas, que trocam informações entre si, de forma a propiciar maior inteligibilidade e qualidade da fala. Este trabalho tem como objetivo apresentar um novo modelo matemático para a predição de desempenho do processo de redução de ruído quando a taxa de comunicação entre os dois aparelhos é diminuída para economizar energia. O modelo convencional para a quantização é generalizado para incluir também a saturação. Resultados de simulação indicam maior acurácia na capacidade de predição de desempenho.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Vitor P. Curtarelli

Programa de Pós-Graduação em Engenharia Elétrica,UFSC, Florianópolis, SC

Márcio H. Costa

Programa de Pós-Graduação em Engenharia Elétrica,UFSC, Florianópolis, SC

Citas

DAY, G. A.; BROWNING, G. G.; GATEHOUSE, S. Benefit from binaural hearing aids in individuals with a severe hearing impairment. British Journal of Audiology, Taylor & Francis, v. 22, p. 273–277, 1988.

AVAN, P.; GIRAUDET, F.; BÜKI, B. Importance of binaural hearing. Audiology & Neuro-otology, Karger Publishers, v. 20, Suppl. 1, p. 3–6, 2015.

LOTTERMAN, S. H.; KASTEN, R. N.; MAJERUS, D. M. Battery life and nonlinear distortion in hearing aids. Journal of Speech and Hearing Disorders, ASHA, v. 3, p. 82–118, 1967.

ROY, O.; VETTERLI, M. Rate-Constrained Collaborative Noise Reduction for Wireless Hearing Aids. IEEE Transactions on Signal Processing, v. 57, n. 2, p. 645–657, fev. 2009.

ZHANG, J.; LI, C. Quantization-Aware Binaural MWF Based Noise Reduction Incorporating External Wireless Devices. IEEE/ACM transactions on Audio, Speech, and Language Processing, v. 29, p. 3118–3131, 2021.

LIPSHITZ, S.; WANNAMAKER, R.; VANDERKOOY, J. Quantization and dither: A theoretical survey. Journal of the Audio Engineering Society, v. 40, p. 355–374, mai. 1992.

WANNAMAKER, R.; LIPSHITZ, S.; VANDERKOOY, J.; WRIGHT, J. A theory of nonsubtractive dither. Signal Processing, IEEE Transactions on, v. 48, p. 499–516, mar. 2000.

HADAD, E.; MARQUARDT, D.; DOCLO, S.; GANNOT, S. Theoretical analysis of binaural transfer function MVDR beamformers with interference cue preservation constraints. IEEE/ACM Transactions on Audio, Speech, and Language Processing, v. 23, n. 12, p. 2449–2464, 2015.

LOIZOU, P. C. Speech Enhancement: Theory and Practice. 2nd. USA: CRC Press, Inc., 2013.

CHEN, J.; BENESTY, J.; HUANG, Y.; DOCLO, S. New insights into the noise reduction Wiener filter. IEEE Transactions on Audio, Speech, and Language Processing, v. 14, n. 4, p. 1218–1234, 2006.

SRIPAD, A.; SNYDER, D. A necessary and sufficient condition for quantization errors to be uniform and white. IEEE Transactions on Acoustics, Speech, and Signal Processing, v. 25, n. 5, p. 442–448, 1977.

KAYSER, H.; EWERT, S.; ANEMÜLLER, J.; ROHDENBURG, T.; HOHMANN, V.; KOLLMEIER, B. Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing, v. 2009, p. 6, dez. 2009.

HENTER, G.; MERRITT, T.; SHANNON, M.; MAYO, C.; KING, S. Measuring the perceptual effects of modelling assumptions in speech synthesis using stimuli constructed from repeated natural speech. Proceedings of the Annual Conference of the International Speech Communication Association, p. 1504–1508, jan. 2014.

DRESCHLER, W.; HERSCHUURE, H.; LUDVIGSEN, C.; WESTERMANN, S. ICRA noises: Artificial noise signals with speech-Like spectral and temporal properties for hearing aid assessment. Audiology, v. 40, p. 148–157, jan. 2001.

SMITH, S. W. FFT convolution and the overlap-add method. [S.l.]: EE Times, 2007.

CHRISTIANSEN, C.; PEDERSEN, M. S.; DAU, T. Prediction of speech intelligibility based on an auditory preprocessing model. Speech Communication, v. 52, n. 7, p. 678–692, 2010.

BORGA, M. Canonical Correlation: a Tutorial, out. 2001.

RIX, A.; BEERENDS, J.; HOLLIER, M.; HEKSTRA, A. Perceptual evaluation of speech quality (PESQ) - a new method for speech quality assessment of telephone networks and codecs. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, v. 2, p. 749–752, 2001.

TAAL, C.; HENDRIKS, R.; HEUSDENS, R.; JENSEN, J. A short-time objective intelligibility measure for time-frequency weighted noisy speech. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 4214–4217, abr. 2010.

PAWULA, R. A modified version of Price’s theorem. IEEE Transactions on Information Theory, v. 13, n. 2, p. 285–288, 1967.

Publicado

2023-12-18

Número

Sección

Trabalhos Completos