Fractional Euler-Bernoulli Model

dimensional analysis and applications

Autores/as

  • José I. S. Lustosa Instituto Federal da Paraíba - IFPB
  • Flávio de C. Bannwart Universidade Estadual de Campinas - FEM/Unicamp
  • Edmundo C. de Oliveira Universidade Estadual de Campinas - IMECC/Unicamp

DOI:

https://doi.org/10.5540/03.2025.011.01.0400

Palabras clave:

Euler-Bernoulli, Timoshenko-Ehrenfest, ANSYS, solução fracionária

Resumen

A generalized fractional solution, presenting dimensional analysis, is proposed for the Euler-Bernoulli beam model in the case of a simply supported beam subjected to a uniformly distributed static load. This solution is used to evaluate and identify the shear effects, covered by the Timoshenko-Ehrenfest solution, as well as the effects on the deflection of the stress concentration in the supports of the aforementioned beam. The shear effects are evaluated by adjusting the parameter α incorporated in the fractional Euler-Bernoulli solution with the Timoshenko-Ehrenfest solution. The evaluation of the effects of supports is done by adjusting the fractional Euler-Bernoulli solution with the solution obtained from a linear analysis carried out in the ANSYS software. The adjustment, in both cases, is made by taking the maximum deflection as a reference.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José I. S. Lustosa, Instituto Federal da Paraíba - IFPB

Researcher in fractional calculus and structural effects evaluation.

Flávio de C. Bannwart, Universidade Estadual de Campinas - FEM/Unicamp

Researcher in mechanical engineering and fractional calculus applications.

Edmundo C. de Oliveira, Universidade Estadual de Campinas - IMECC/Unicamp

Researcher in mathematics and fractional calculus.

Citas

INC. Release ANSYS. 17.0 documentation for Ansys. USA: Canonsburg, 2016.

X. F. Li and K. Y. Lee. “Effect of horizontal reaction force on the deflection of short simply supported beams under transverse loadings”. In: International Journal of Mechanical Sciences v.99 (2015), pp. 121–129. doi: https://doi.org/10.1016/j.ijmecsci.2015.05.010.

J. I. S. Lustosa. “Cálculo fracionário aplicado à avaliação de efeitos estruturais na deflexão de vigas biapoiadas”. PhD thesis. Unicamp, 2022.

J. I. S. Lustosa, F. C. Bannwart, and E. C. Oliveira. “Fractional calculus applied to evaluate stress concentration and shear effects in simply supported beams”. In: Revista Eletrônica Paulista de Matemática v.22.nº.2 (2022), pp. -89–101. doi: 10.21167/cqdv22n22022089101.

J. I. S. Lustosa, F. C. Bannwart, and E. C. Oliveira. “On the Euler-Bernoulli anel Timoshenko-Ehrenfest beam theories under fractional calculus approach”. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics v 8.nº 1 (2021). doi: 10.5540/03.2021.008.01.0457.

J. I. S. Lustosa, F. C. Bannwart, and E. C. Oliveira. “On the separate assessment of structural effects on the simple beam deflection in the light of fractional calculus”. In: Trends in Computational and Applied Mathematics v.24.nº.2 (2022), pp. -211–227. doi: 10.5540/tcam.2023.024.02.00211.

R. C. Ribbeler. Resistência dos Materiais. 5a. ed. São Paulo: Peason, 2004.

R. G. L. da Silva. “Análise inelástica avançada de pórticos planos de aço considerando as influências do cisalhamento e de ligações semirrígidas”. PhD thesis. UFMG, 2010.

T. C. da Silva. “Estudo analítico das teorias de viga de Bernoulli e Timoshenko para condições de contorno variadas”. In: Revista de Engenharia Civil IMED v.6.nº.1 (2019), pp. 57–70. doi: https://doi.org/10.18256/2358-6508.2019.v6i1.2997.

G. S. Teodoro, D. S. Oliveira, and E. C. Oliveira. “On fractional derivatives”. In: Revista Brasileira de Ensino de Fısica v.40.nº 2 (2017). doi: https://doi.org/10.1590/1806-9126-RBEF-2017-0213.

S. P. Timoshenko and J. E. Gere. Mecânica dos Sólidos. v.1. Rio de Janeiro: LTC editora, 1984.

Descargas

Publicado

2025-01-20

Número

Sección

Trabalhos Completos