Stability analysis of the one-dimensional GLD-Lagrangian scheme

Autores/as

  • Débora O. Medeiros Fundação Getulio Vargas
  • José A. Cuminato Universidade de São Paulo

DOI:

https://doi.org/10.5540/03.2025.011.01.0484

Palabras clave:

Generalized Lie Derivative, Lagrangian Scheme, Finite Difference Method, Numerical Stability

Resumen

Given the ongoing study of formulations and stabilizing methods for constitutive models, this work discusses the stability analysis of a particular case of a new discretization scheme. The proposed scheme is based on a reformulation of the upper-convected time derivative. This reformulation is over a Lagrangian framework and uses the generalized Lie derivative. The stability analysis is carried out for the first-order scheme and shows that the scheme supports the CFL type restriction, proving to be viable for numerical simulations.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

R. Comminal, J. Spangenberg, and J. H. Hattel. “Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation”. In: Journal of Non-Newtonian Fluid Mechanics 223 (2015), pp. 37–61.

J. A. Cuminato and M. M. Junior. “Discretização de Equações Diferenciais Parciais: técnicas de diferenças finitas”. In: Coleção Matemática Aplicada, SBM (2013).

J. A. Cuminato and V. Ruas. “Unification of distance inequalities for linear variational problems”. In: Computational and Applied Mathematics 34 (2014), pp. 1009–1033. doi: 10.1007/s40314-014-0163-6.

A. O. Fortuna. Técnicas Computacionais para Dinânica dos Fluidos: Conceitos Básicos e Aplica cões. São Paulo: Edusp, 2000.

H. Giesekus. “A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility”. In: Journal of Non-Newtonian Fluid Mechanics 11.1-2 (1982), pp. 69–109.

J. Hinch and O. Harlen. “Oldroyd-B, and not A?” In: Journal of Non-Newtonian Fluid Mechanics 298 (2021), p. 104668.

R. Fattal; R. Kupferman. “Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation”. In: Journal of Non-Newtonian Fluid Mechanics 126.1 (2005), pp. 23–37.

Y-J. Lee and J. Xu. “New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models”. In: Computer methods in applied mechanics and engineering 195.9-12 (2006), pp. 1180–1206.

Y-J. Lee, J. Xu, and C-S. Zhang. “Stable finite element discretizations for viscoelastic flow models”. In: Handbook of Numerical Analysis. Vol. 16. Elsevier, 2011, pp. 371–432.

D. O. Medeiros. “Numerical analysis of finite difference schemes for constitutive equations in viscoelastic fluid flows”. PhD thesis. Universidade de São Paulo ICMC/USP, 2022.

D. O. Medeiros, H. Notsu, and C. M. Oishi. “Second-order finite difference approximations of the upper-convected time derivative”. In: SIAM Journal on Numerical Analysis 59.6 (2021), pp. 2955–2988.

J. G. Oldroyd. “On the formulation of rheological equations of state”. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 200.1063 (1950), pp. 523–541.

Descargas

Publicado

2025-01-20

Número

Sección

Trabalhos Completos