Interval Newton’s method using constrained interval arithmetic

Autores/as

  • Gino Gustavo Maqui Huaman National University of San Antonio Abad of Cusco
  • Ulcilea Alves Severino Leal Federal University of Triângulo Mineiro
  • Alejandro Ttito Ttica National University of San Antonio Abad of Cusco

DOI:

https://doi.org/10.5540/03.2025.011.01.0414

Palabras clave:

Constrained Interval Arithmetic, Interval Taylor’s Theorem, Interval Newton’s Method

Resumen

This article presents the Newton’s method for interval-valued functions, for this, is introduced a derivative concept to use the Taylor’s theorem for interval-valued functions. The arithmetic structure associated with these results is the constrained interval arithmetic.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A.K. Bhurjee, G. Panda, “Efficient solution of interval optimization problem”, In: Math. Meth. Res. 76, 273–288, 2012.

J. R. Campos, E. Assunção, G. N. Silva, W. A. Lodwick, and M. C. M. Teixeira, “Discrete-time interval optimal control problem”, In: International Journal of Control, pp. 1-7, Dec. 2017. DOI:10.1080/00207179.2017.1410575

J. R. Campos, E. Assunção, G. N. Silva, W. A. Lodwick, C. M. Teixeira, U. A. S. Leal, “Constrained interval arithmetic to solve the discrete-time interval optimal control problem”, In: Recent Trends on Fuzzy Systems da Sociedade Brasileira de Matemática Aplicada e Computacional, 2018.

Y. Chalco-Cano, W.A. Lodwick, A. Rufián-Lizana, “Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative”, In: Fuzzy Optimization and decision Making 12, 305–322, 2013.

Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, M.D. Jiménez-Gamero, “Calculus for interval-valued functions using generalized Hukuhara derivative and applications”, In: Fuzzy Sets and Systems 219, 49D-67, 2013.

W.A. Lodwick, “Constrained Interval Arithmetic”, CCM Report, (http://www-math.cudenver.edu/ccm/reports/index.shtml), 1999.

G. G. Maqui-Huaman, G. Silva, and U. Leal, “Necessary Optimality Conditions for Interval Optimization Problems with Inequality Constraints Using Constrained Interval Arithmetic”, In: Fuzzy Information Processing, pp. 439-449, 2018. DOI:10.1007/978-3-319-95312-0 38

R. E. Moore: Interval Analysis. Prince-Hall, Englewood Cliffs, NJ, 1966.

Descargas

Publicado

2025-01-20

Número

Sección

Trabalhos Completos