Número mínimo de autovalores distintos de grafos threshold
Palabras clave:
Grafos threshold, autovalores distintos, matriz simétrica, teoria dos grafosResumen
O artigo estuda o parâmetro q(G) para grafos threshold conexos, explorando a existência de uma matriz M ∈ S(G) para certos valores de q(G) e calculando efetivamente os valores dessa matriz M.
Descargas
Citas
B. Ahmadi, F. Alinaghipour, M. Cavers, S. Fallat, K. Meagher e S. Nasserasr. “Minimum number of distinct eigenvalues of graphs”. Em: ELA. The Electronic Journal of Linear Algebra [electronic only] 26 (abr. de 2013). doi: 10.13001/1081-3810.1679.
W. Barrett, S. Fallat, V. Furst, S. Nasserasr, B. Rooney e M. Tait. “Regular graphs of degree at most four that allow two distinct eigenvalues”. Em: Linear Algebra and its Applications 679 (2023), pp. 127–164. issn: 0024-3795. doi: https://doi.org/10.1016/j.laa.2023.09.012. url: https://www.sciencedirect.com/science/article/pii/S0024379523003488.
W. Barrett, S. Fallat, H. T. Hall, L. Hogben, J. C-H Lin e B. L. Shader. “Generalizations of the Strong Arnold Property and the Minimum Number of Distinct Eigenvalues of a Graph”. Em: The Electronic Journal of Combinatorics 24.2 (2017), pp. 2–40.
S. Fallat e S. A. Mojallal. “On the minimum number of distinct eigenvalues of a threshold graph”. Em: Linear Algebra and its Applications 642 (2022), pp. 1–29.
R. H. Levene, P. Oblak e H. Šmigoc. “Orthogonal symmetric matrices and joins of graphs”. Em: Linear Algebra and its Applications 652 (2022), pp. 213–238.