Impact of Carrying Capacity on Species Competition in Optimization Strategies for Impulsive Releases

Autores/as

  • Jéssica C. S. Alves Universidade de São Paulo
  • Sergio M. Oliva Universidade de São Paulo
  • Christian E. Schaerer Universidad Nacional de Asunción

DOI:

https://doi.org/10.5540/03.2026.012.01.0292

Palabras clave:

Optimal Control, Carrying Capacity, Impulsive Releases, Population Dynamics, Species Competition

Resumen

This work investigates the influence of the carrying capacity on the replacement of species S1 by species S2, with a focus on minimizing intervention costs. The problem is formulated as an optimal control problem, in which the control actions correspond to impulsive releases of individuals from species S2. The objective is to determine optimal release strategies that ensure the eradication of S1 and the successful establishment of S2. Numerical results are provided to illustrate the control strategies and to analyze how the carrying capacity affects the optimal release policy.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jéssica C. S. Alves, Universidade de São Paulo

Researcher in optimization and species competition models.

Sergio M. Oliva, Universidade de São Paulo

Specialist in applied mathematics and control theory.

Christian E. Schaerer, Universidad Nacional de Asunción

Expert in mathematical modeling and ecological systems.

Citas

J. C. S. Alves, S. M. Oliva, and C. E. Schaerer. “Optimizing impulsive releases: A species competition model”. In: Applied Mathematical Modelling 151 (2026), p. 116517. doi: 10.1016/j.apm.2025.116517.

L. D. R. Beal, D. C. Hill, R. A. Martin, and J. D. Hedengren. “GEKKO Optimization Suite”. In: Processes 6.8 (2018). doi: 10.3390/pr6080106.

L. D. Berkovitz. Optimal Control Theory. Applied Mathematical Sciences. Springer New York, 2013. isbn: 9781475760972.

D. E. Campo-Duarte, D. Cardona-Salgado, and O. Vasilieva. “Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach”. In: Applied Mathematics & Information Sciences 11.4 (2017), pp. 1011–1027. doi: 10.18576/amis/110408.

D. Cardona-Salgado, D. E. Campo-Duarte, L. S. Sepulveda-Salcedo, and O. Vasilieva. “Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach”. In: Applied Mathematical Modelling 82 (2020), pp. 125–149. doi: 10.1016/j.apm.2020.01.032.

E. J. Chapman and C. J. Byron. “The flexible application of carrying capacity in ecology”. In: Global Ecology and Conservation 13 (2018). doi: 10.1016/j.gecco.2017.e00365.

G. Hartvigsen. “Carrying Capacity, Concept of”. In: Encyclopedia of Biodiversity. Ed. by S. A Levin. Second Edition. Waltham: Academic Press, 2013, pp. 695–701. doi: 10.1016/B978-0-12-384719-5.00020-4.

R. D. Holt and N. Kortessis. “Species Coexistence”. In: Encyclopedia of Biodiversity. Ed. by S. M. Scheiner. Third Edition. Oxford: Academic Press, 2024, pp. 219–233. doi: 10.1016/B978-0-12-822562-2.00113-4.

A. R. Kanarek, W. T. Colleen, M. Barfield, and R. D. Holt. “Overcoming Allee effects through evolutionary, genetic, and demographic rescue”. In: Journal of biological dynamics 9.1 (2015), pp. 15–33. doi: 10.1080/17513758.2014.978399.

U. Unal. “Discrete Wolbachia Diffusion in Mosquito Populations with Allee Effects”. In: European Journal of Pure and Applied Mathematics 15.4 (2022), pp. 1613–1622. doi: 10.29020/nybg.ejpam.v15i4.4524.

Descargas

Publicado

2026-02-13

Número

Sección

Trabalhos Completos