Modeling Nanoparticle-Stabilized Foam Flow in Porous Media

mathematical analysis and uncertainty quantification

Autores/as

  • Tatiana D. Assis UFJF
  • Grigori Chapiro UFJF

DOI:

https://doi.org/10.5540/03.2026.012.01.0313

Palabras clave:

Nanoparticle-Stabilized Foam, Flow in Porous Media, Particle Retention, Uncertainty Quantification, Sensitivity Analysis

Resumen

Foam injection with nanoparticles can be useful in various subsurface applications, particularly in challenging field conditions such as oil production in the Brazilian Pre-Salt. By enhancing foam stabilization, nanoparticles improve their effectiveness as mobility-control agents in gas flooding. We propose new models of nanoparticle-stabilized foam flow in porous media, accounting for nanoparticle transport and its effect on reducing foam mobility. The first model considers foam at local equilibrium and is governed by a non-strictly hyperbolic system of conservation laws. The existence and uniqueness of a global solution as a sequence of waves are proved using entropy conditions. The analytical solution is utilized to evaluate the impact of nanoparticles on key industrial parameters such as breakthrough time, water production, and pressure drop over time. We also perform sensitivity analysis and uncertainty quantification studies. The second and more complex model accounts for particle retention and permeability reduction. In this case, a steady-state semi-analytical solution is presented. It is then used to investigate the impact of nanoparticle retention on water saturation, foam’s apparent viscosity, and pressure drop profiles. We also discuss two opposing effects of retention on pressure drop and how models that neglect one or both of these effects underestimate pressure.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

P. Bedrikovetsky, D. Marchesin, F. Shecaira, A. L. Souza, P. V. Milanez, and E. Rezende. “Characterisation of deep bed filtration system from laboratory pressure drop measurements”. In: J. Pet. Sci. Eng. 32.2 (2001), pp. 167–177.

T. Danelon. “Modeling nanoparticle-stabilized foam flow in porous media: Mathematical analysis and uncertainty quantification”. PhD thesis. Federal University of Juiz de Fora, 2025.

T. Danelon, R. Farajzadeh, P. Bedrikovetsky, and Grigori Chapiro. “Modeling nanoparticle-stabilized foam flow in porous media accounting for particle retention and permeability reduction”. In: Interpore J. 2 (2025).

T. Danelon, P. Paz, and G. Chapiro. “The mathematical model and analysis of the nanoparticle-stabilized foam displacement”. In: Appl. Math. Model. 125 (2024), pp. 630–649.

T. Danelon, B. M. Rocha, R. W. dos Santos, and G. Chapiro. “Sensitivity analysis and uncertainty quantification based on the analytical solution for nanoparticle-stabilized foam flow in porous media”. In: Geoenergy Sci. Eng. 242 (2024), p. 213285.

D. Du, D. Zhao, F. Wang Y. Li, and J. Li. “Parameter calibration of the stochastic bubble population balance model for predicting NP-stabilized foam flow characteristics in porous media”. In: Colloids Surf. A Physicochem. Eng. Asp. 614 (2021), p. 126180.

Ø. Eide, M. Fernø, S. Bryant, A. Kovscek, and J. Gauteplass. “Population-balance modeling of CO2 foam for CCUS using nanoparticles”. In: J. Nat. Gas Sci. Eng. 80 (2020), p. 103378.

R. Farajzadeh, P. Bedrikovetsky, M. Lotfollahi, and L. W. Lake. “Simultaneous sorption and mechanical entrapment during polymer flow through porous media”. In: Water Resour. Res. 52.3 (2016), pp. 2279–2298.

J. M. A. Godoi and P. H. L. S. Matai. “Enhanced oil recovery with carbon dioxide geosequestration: First steps at pre-salt in Brazil”. In: J. Pet. Explor. Prod. Technol. 11 (2021), pp. 1429–1441.

J. P. Herzig, D. M. Leclerc, and P. Le Goff. “Flow of Suspensions through Porous Media—Application to Deep Filtration”. In: Ind. Eng. Chem. Res. 62.5 (1970), pp. 8–35.

G. J. Hirasaki and J. B. Lawson. “Mechanisms of Foam Flow in Porous Media: Apparent Viscosity in Smooth Capillaries”. In: SPE J. 25.02 (1985), pp. 176–190.

A. Keykhosravi, P. Bedrikovetsky, and M. Simjoo. “Experimental insight into the silica nanoparticle transport in dolomite rocks: Spotlight on DLVO theory and permeability impairment”. In: J. Pet. Sci. Eng. 209 (2022), p. 109830.

Q. Li and V. Prigiobbe. “Modeling Nanoparticle Transport in Porous Media in the Presence of a Foam”. In: Transp. Porous Media 131.1 (2020), pp. 269–288.

M. Simjoo, Y. Dong, A. Andrianov, M. Talanana, and P. L. J. Zitha. “Novel Insight into Foam Mobility Control”. In: SPE J. 18.3 (2013).

B. Sudret. “Meta-models for structural reliability and uncertainty quantification”. In: APSSRA. Singapore: HAL, 2012, pp. 1–24.

N. Yekeen, M. A. Manan, A. K. Idris, E. Padmanabhan, R. Junin, A. M. Samin, A. O. Gbadamosi, and I. Oguamah. “A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery”. In: J. Pet. Sci. Eng. 164 (2018), pp. 43–74.

P. L. J. Zitha and D. X. Du. “A New Stochastic Bubble Population Model for Foam Flow in Porous Media”. In: Transp. Porous Media 83.3 (2010), pp. 603–621.

Descargas

Publicado

2026-02-13

Número

Sección

Trabalhos Completos