A Virtual Element Numerical Approximation for the Vibration Problem of a Thin Plate

Autores/as

  • Iván Velásquez Universidad Militar Nueva Granada

DOI:

https://doi.org/10.5540/03.2026.012.01.0241

Palabras clave:

Vibration Plate, Virtual Element Method, Clamped Plate, Simply Supported, Numerical Results

Resumen

We focus our attention in the development of a virtual element method for the approximation of the vibration problem of a thin plate modeled by Kirchhoff-Love equations. We introduce a weak variational formulation based on the Sobolev space H2. In addition, we propose a discretization by means of the lowest-order non conforming elements. We show that the resulting scheme provides a correct approximation of the spectrum and prove optimal-order error estimates. Finally, we report some numerical tests supporting our theoretical results.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

D. Adak, M. Mora, and I. Velásquez. “A C0-nonconforming virtual element method for the vibration and buckling problems of thin plates”. In: Computer Methods in Applied Mechanics and Engineering 403 (2023), pp. 1–24. doi: 10.1016/j.cma.2022.115763.

P. F. Antonietti, G. Manzini, and M. Verani. “The fully nonconforming virtual element method for biharmonic problems”. In: Mathematical Models and Methods in Applied Sciences 28.2 (2018), pp. 387–407. doi: 10.1142/S0218202518500100.

L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. “Basic principles of virtual element methods”. In: Mathematical Models and Methods in Applied Sciences 23.1 (2013), pp. 199–214. doi: 10.1142/S0218202512500492.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. 2nd rev. ed. SIAM, 2002. isbn: 978-0-898715-14-9.

F. Dassi and I. Velásquez. “Virtual element method on polyhedral meshes for bi-harmonic eigenvalues problems”. In: Computers & Mathematics with Applications 121 (2022), pp. 85–101. doi: 10.1016/j.camwa.2022.07.001.

P. Grisvard. Elliptic Problems in Non-Smooth Domains. Vol. 24. Monographs and Studies in Mathematics. Boston: Pitman, 1985. isbn: 978-0273086569.

F. Lepe, D. Mora, G. Rivera, and I. Velásquez. “A virtual element method for the Steklov eigenvalue problem allowing small edges”. In: Journal of Scientific Computing 88 (2021), pp. 1–21. doi: 10.1007/s10915-021-01555-3.

D. Mora, G. Rivera, and I. Velásquez. “A virtual element method for the vibration problem of Kirchhoff plates”. In: ESAIM. Mathematical Modelling and Numerical Analysis 52.4 (2018), pp. 1437–1456. doi: 10.1051/m2an/2017041.

J. Zhao, B. Zhang, S. Chen, and S. Mao. “The Morley–type virtual element for plate bending problems”. In: Journal of Scientific Computing 76.1 (2018), pp. 610–629. doi: 10.1007/s10915-017-0632-3.

Descargas

Publicado

2026-02-13

Número

Sección

Trabalhos Completos