Traveling Waves for the Newtonian Foam Displacement in Porous Media
DOI:
https://doi.org/10.5540/03.2026.012.01.0342Palabras clave:
Foam Flow, Porous Media, Traveling Wave, Riemann ProblemResumen
This work presents an analytical study of three partial differential equations systems that describe foam flow models in porous media. The first two models consider the surfactant concentration fixed above the critical micellar concentration: First Order Kinetic model and a simplified version of the Stochastic Bubble Population balance model. A significant difference between these models is the influence of critical water saturation in the first model. The third model generalizes the second by varying the surfactant concentration and considering gas mobility that depends on the surfactant concentration. We study the traveling wave solutions of such systems using phase portrait analysis. All obtained analytical solutions are confirmed using direct numerical simulations of the system of partial differential equations. The second model is validated with experimental data.
Descargas
Citas
E. Ashoori, D. Marchesin, and W. R. Rossen. “Roles of transient and local equilibrium foam behavior in porous media: Traveling wave”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 377.1 (2011), pp. 228–242.
J. B. Cedro, R. V. Quispe Zavala, M. C. Coaquira, L. F. Lozano, and G. Chapiro. “Estudo de um modelo cinético para escoamento de espuma em meios porosos”. In: CILAMCE. Natal, Brazil, 2019.
G. J. Hirasaki and J. B. Lawson. “Mechanisms of foam flow in porous media: Apparent viscosity in smooth capillaries”. In: SPE Journal 25.2 (1985), pp. 176–190.
L. F. Lozano, J. B. Cedro, R. Q. Zavala, and G. Chapiro. “How simplifying capillary effects can affect the traveling wave solution profiles of the foam flow in porous media”. In: International Journal of Non-Linear Mechanics 139.103867 (2022).
L. F. Lozano, R. Q. Zavala, and G. Chapiro. “Mathematical properties of the foam flow in porous media”. In: Computational Geosciences 25.1 (2021), pp. 515–527.
W. R. Rossen. “Foams in enhanced oil recovery”. In: Foams: Theory, measurements and applications. Ed. by CRC Press. Vol. 57. Routledge, 1996. Chap. 11, pp. 413–464.
W. R. Rossen. “Numerical challenges in foam simulation: a review”. In: Proceedings Series of SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA, 2013, pp. 1–10.
W. R. Rossen and P. A. Gauglitz. “Percolation theory of creation and mobilization of foams in porous media”. In: AIChE Journal 36.8 (1990), pp. 1176–1188.
M. Simjoo and P. L. J. Zitha. “Modeling of Foam Flow Using Stochastic Bubble Population Model and Experimental Validation”. In: Transport in Porous Media 107.3 (2015), pp. 799–820.
R. Q. Zavala and G. Chapiro. “Classification of the traveling wave solutions for filtration combustion considering thermal losses”. In: Combustion and Flame 219 (2020), pp. 416– 424.
R. Q. Zavala, L. F. Lozano, and G. Chapiro. “Traveling wave solutions describing the foam flow in porous media for low surfactant concentration”. In: Computational Geosciences 28.2 (2024), pp. 323–340.
R. Q. Zavala, L. F. Lozano, P. L. J. Zitha, and G. Chapiro. “Analytical solution for the population-balance model describing foam displacement”. In: Transport in Porous Media 144 (2022), pp. 211–227.
P. L. J. Zitha and D. X. Du. “A New Stochastic Bubble Population Model for Foam Flow in Porous Media”. In: Transport in Porous Media 83.3 (2010), pp. 603–621.