Three-Dimensional Simulation of Neutron Flux Distribution in Boron Neutron Capture Therapy (BNCT)

Autores/as

  • Fernanda Tumelero FURG
  • Guilherme J. Weymar UFPel
  • Claudio Z. Petersen UFPel
  • Jorge L. M. Caurio Jr FURG

DOI:

https://doi.org/10.5540/03.2026.012.01.0341

Palabras clave:

BNCT, Neutron Flux, Neutron Diffusion Equation, Exact Solution, Method of Separation of Variables

Resumen

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat forms of malignant brain tumor, presenting a high incidence and resistance to conventional treatment methods. Boron Neutron Capture Therapy (BNCT) stands out as an innovative and promising approach for treating complex tumors such as GBM, as it enables the selective destruction of tumor cells with minimal impact on healthy tissues. In this study, the multigroup neutron diffusion equation is solved in a three-dimensional domain using four energy groups. The neutron source is represented as a boundary condition, and after diagonalizing the system of equations, the method of Separation of Variables can be applied to obtain an exact solution. The validation of the proposed approach was carried out through numerical simulations in a water phantom, whose results indicated that thermal and epithermal neutron fluxes are predominant.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

N. Kamran et al. “Current state and future prospects of immunotherapy for glioma”. In: Immunotherapy 10 (2018), pp. 317–339. doi: 10.2217/imt-2017-0122.

S. Altieri and N. Protti. “A brief review on reactor-based neutron sources for boron neutron capture therapy”. In: Therapeutic Radiology and Oncology 2 (2018), pp. 1–8. doi: 10.21037/tro.2018.10.08.

F. Arianto, L. T. Handayani, W. S. Budi, and P. Basuki. “Determination of Neutron Flux in Brain Cancer Boron Neutron Capture Therapy Using Monte Carlo Simulation”. In: Physics Communication 6 (2022), pp. 79–84. doi: 10.1016/j.nima.2022.167240.

R. V. Balle. “In Vivo Total Dose Analysis in Mice for BNCT Trial TRIGA Kartini Research Reactor Based Using PHITS”. In: Indonesian Journal of Physics and Nuclear Applications 4 (2019), pp. 27–32. doi: 10.24246/ijpna.v4i1.27-32.

A. H. Bilalodin and F. Abdullatif. “Dose analysis of Boron Neutron Capture Therapy (BNCT) on head cancer using PHITS code with neutron source from accelerator”. In: Journal of Physics: Conference Series 2498 (2023), pp. 1–7. doi: 10.1088/1742-6596/2498/1/012044.

IAEA. Advances in Boron Neutron Capture Therapy. Vienna: International Atomic Energy Agency, 2023. isbn: 978-92-0-132723-9.

C. Lee, N. Jung, and H. Lee. “Neutron Flux Calculation for BNCT with Monte Carlo Diffusion Hybrid Method”. In: Transactions of the Korean Nuclear Society Virtual Autumn Meeting. 2020, pp. 1–4.

G. Li, W. Jiang, L. Zhang, W. Chen, and Q. Li. “Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals”. In: Frontiers in Public Health 9 (2021), p. 642561. doi: 10.3389/fpubh.2021.642561.

M. Lim, Y. Xia, C. Bettegowda, and M. Weller. “Current state of immunotherapy for glioblastoma”. In: Nature Reviews Clinical Oncology 15 (2018), pp. 422–442. doi: 10.1038/s41571-018-0003-5.

Y. Mishima, M. Ichihashi, S. Hatta, C. Honda, K. Yamamura, and T. Nakagawa. “New thermal neutron capture therapy for malignant melanoma: melanogenesis-seeking 10B molecule- melanoma cell interaction from in vitro to first clinical trial”. In: Pigment Cell Research 2.4 (1989), pp. 226–234. doi: 10.1111/j.1600-0749.1989.tb00196.x.

J. Niemkiewicz and T. E. Blue. “Removal-Diffusion Theory for Calculation of Neutron Distributions in BNCT”. In: Advances in Neutron Capture Therapy. Ed. by A. H. Soloway, R. F. Barth, and D. E. Carpenter. Boston, MA: Springer US, 1993, pp. 177–180. doi: 10.1007/978-1-4615-2978-1_35.

J. Niemkiewicz, T. E. Blue, and N. Gupta. “Calculation of neutron flux distributions in BNCT using removal-diffusion theory”. In: Transactions of the American Nuclear Society 70 (Dec. 1994).

M. Nojiri, T. Takata, N. Hu, Y. Sakurai, M. Suzuki, and H. Tanaka. “Neutron flux evaluation algorithm with a combination of Monte Carlo and removal-diffusion calculation methods for boron neutron capture therapy”. In: Medical Physics 51.5 (2024), pp. 3711–3724. doi: 10.1002/mp.16931.

K. Takada, H. Kumada, P. H. Liem, H. Sakurai, and T. Sakae. “Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy”. In: Physica Medica 32.12 (2016), pp. 1846–1851. doi: 10.1016/j.ejmp.2016.11.007.

Descargas

Publicado

2026-02-13

Número

Sección

Trabalhos Completos