Um método de Região de Confiança sem Derivadas com Modelos Construídos por máquinas de Vetores Suporte para Regressão

Autores/as

  • Adriano Verdério
  • Katya Scheinberg
  • Elizabeth W. Karas
  • Lucas G. Pedroso

DOI:

https://doi.org/10.5540/03.2015.003.01.0439

Palabras clave:

Máquinas Vetores Suporte, Otimização sem Derivadas

Resumen

As máquinas de Vetores suporte são uma classe de algoritmos de Aprendizagem de máquinas motivados por resultados da Teoria de Aprendizagem Estatística. No início, foram usadas para a classificação de padrões e posteriormente estendidas para a regressão de funções. De um certo modo é uma generalização das técnicas usuais de regressão. Nosso objetivo é utiliza-las para construir modelos que aproximam funções as quais temos conhecimento limitado, não conseguindo por exemplo calcular derivadas. Também queremos mostrar que estes modelos são boas aproximações a fim de garantir a convergência global de um método de região de confiança sem derivadas para problemas de otimização com restrições.

Descargas

Los datos de descargas todavía no están disponibles.

Publicado

2015-08-25

Número

Sección

Otimização