The 2.5D VTI pseudo-acoustic wave equation

Autores/as

  • Rafael Aleixo
  • Francisco de Assis Silva Neto
  • Daniela Amazonas

DOI:

https://doi.org/10.5540/03.2021.008.01.0483

Palabras clave:

Wave equation, anisotropy, acoustic approximation.

Resumen

The finite-difference method applied to the full 3D wave equation is a rather  time-consuming process. However, in the 2.5D case, we can take advantage of the médium  symmetry. By taking the Fourier transform with respect to the out-of-plane direction (the  symmetry axis) and then, the 3D problem can be reduced to a repeated 2D problem. The  third dimension is taken into account by a sum over the corresponding wave-vector compo-  nent. A criterion for where to end this theoretically infinite sum derives from the stability  conditions of the finite-difference schemes employed. In this way, the computation time of  the finite-difference calculations can be considerably reduced. The quality of the modelling  results obtained with this 2.5D finite-difference scheme is comparable to that obtained using  a standard 3D finite-difference scheme. In this work we apply this idea to the anisotropic  pseudo-acoustic wave equation.  

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rafael Aleixo

Federal University of Santa Catarina, Department of Mathematics, Blumenau, Brazil

Francisco de Assis Silva Neto

Pontifical Catholic University of Rio de Janeiro, TECGRAF, Rio de Janeiro, Brazil

Daniela Amazonas

Federal University of Santa Catarina, Department of Mathematics, Blumenau, Brazil

Citas

Alkhalifah, T. Acoustic approximations for processing in transversely isotropic media, Geophysics, 63:623-631, 1998. DOI: 10.1190/1.1444361.

Alkhalifah, T. An acoustic wave equation for anisotropic media, Geophysics, 65:1239-1250, 2000. DOI: 10.1190/1.1444815.

Alkhalifah, T. and Tsvankin, I. Velocity analysis for transversely isotropic media, Geophysics, 60:1550-1566, 1995. DOI: 10.1190/1.1443888.

Bleistein, N. Two-and-one-half dimensional in-plane wave propagation, Geophysical Prospecting, 34:686-703, 1986. DOI: 10.1111/j.l365-2478.1986.tb00488.x.

Bleistein, N., Cohen, J. K. and Hagin, F. G. Two and one-half dimensional Born inversion with an arbitrary reference, Geophysics, 52:26-36, 1987. DOI: 10.1190/1.1442238.

Cao, S. and Greenhalgh, S. 2.5-D modeling of seismic wave propagation; boundary condition, stability criterion, and efficiency, Geophysics, 63:2082-2090, 1998. DOI: 10.1190/1.1444501.

Docherty, P. Two-and-one-half-dimensional poststack inversion, SEG Technical Program Expanded Abstracts 1987, volume 1, 564-565, 1987. DOI: 10.1190/1.1892049.

Dong, W., Emanuel, M. J., Bording, P. and Bleistein, N. A computer imple- mentation of 2.5-D common-shot inversion, Geophysics, 56:1384-1394, 1991. DOI: 10.1190/1.1443158.

Li, M., Druskin, V., Abubakar, A. and Habashy, T. M. A 2.5D finite-difference algo- rithm for elastic wave modeling using near-optimal quadratures, Geophysics, 8LT155- T162, 2016. DOI: 10.1190/geo2015-0550.1.

Novais, A. and Santos, L. T. 2.5D finite-difference solution of the acoustic wave equation, Geophysical Prospecting, 53:523-531, 2005. DOI: 10.1111/j.l365- 2478.2005.00488.x.

Ortega, F. G., Bassrei, A., Gomes, E. N. S. and de Oliveira, A. G. Non-hyperbolic velocity analysis of seismic data from Jequitinhonha Basin, Northeastern Brazil, An. Acad. Bras. Ciênc., 92(1):1-14, 2020. DOI: 10.1590/0001-3765202020180619.

Silva Neto, F. A., Costa, J. C., Schleicher, J. and Novais, A. 2.5D reverse-time migration, Geophysics, 76:S143-S149, 2011. DOI: 10.1190/1.3571272.

Sinclair, C., Greenhalgh, S. and Zhou, B. 2.5D modelling of elastic waves in trans- versely isotropic media using the spectral element method, Exploration Geophysics, 38:225-234, 2007. DOI: 10.1071/EG07025.

Thomsen, L. Weak elastic anisotropy, Geophysics, 51:1954-1996, 1986. DOI: 10.1190/1.1442051.

Wang, Z. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data, Geophysics, 67:1423-1440, 2002. DOI: 10.1190/1.1512743.

Williamson, P. R. and Pratt, R. G. A criticai review of acoustic wave modeling procedures in 2.5 dimensions, Geophysics, 60:591-595, 1995. DOI: 10.1190/1.1443798.

Zhou, B., Greenhalgh, S. and Greenhalgh, M. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method, Geophysical Journal International, 188:223-238, 2012. DOI: 10.1093/gji/ggx273.

Zhao, J., Huang, X., Liu, W., Zhao, W., Song, J., Xiong, B. and Wang, Z. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method, Geophysical Journal International, 211:164-187, 2017. DOI: 10.1111/j.l365- 246X.2011.05246.x.

Descargas

Publicado

2021-12-20

Número

Sección

Trabalhos Completos