The 2.5D VTI pseudo-acoustic wave equation
DOI:
https://doi.org/10.5540/03.2021.008.01.0483Palavras-chave:
Wave equation, anisotropy, acoustic approximation.Resumo
The finite-difference method applied to the full 3D wave equation is a rather time-consuming process. However, in the 2.5D case, we can take advantage of the médium symmetry. By taking the Fourier transform with respect to the out-of-plane direction (the symmetry axis) and then, the 3D problem can be reduced to a repeated 2D problem. The third dimension is taken into account by a sum over the corresponding wave-vector compo- nent. A criterion for where to end this theoretically infinite sum derives from the stability conditions of the finite-difference schemes employed. In this way, the computation time of the finite-difference calculations can be considerably reduced. The quality of the modelling results obtained with this 2.5D finite-difference scheme is comparable to that obtained using a standard 3D finite-difference scheme. In this work we apply this idea to the anisotropic pseudo-acoustic wave equation.
Downloads
Referências
Alkhalifah, T. Acoustic approximations for processing in transversely isotropic media, Geophysics, 63:623-631, 1998. DOI: 10.1190/1.1444361.
Alkhalifah, T. An acoustic wave equation for anisotropic media, Geophysics, 65:1239-1250, 2000. DOI: 10.1190/1.1444815.
Alkhalifah, T. and Tsvankin, I. Velocity analysis for transversely isotropic media, Geophysics, 60:1550-1566, 1995. DOI: 10.1190/1.1443888.
Bleistein, N. Two-and-one-half dimensional in-plane wave propagation, Geophysical Prospecting, 34:686-703, 1986. DOI: 10.1111/j.l365-2478.1986.tb00488.x.
Bleistein, N., Cohen, J. K. and Hagin, F. G. Two and one-half dimensional Born inversion with an arbitrary reference, Geophysics, 52:26-36, 1987. DOI: 10.1190/1.1442238.
Cao, S. and Greenhalgh, S. 2.5-D modeling of seismic wave propagation; boundary condition, stability criterion, and efficiency, Geophysics, 63:2082-2090, 1998. DOI: 10.1190/1.1444501.
Docherty, P. Two-and-one-half-dimensional poststack inversion, SEG Technical Program Expanded Abstracts 1987, volume 1, 564-565, 1987. DOI: 10.1190/1.1892049.
Dong, W., Emanuel, M. J., Bording, P. and Bleistein, N. A computer imple- mentation of 2.5-D common-shot inversion, Geophysics, 56:1384-1394, 1991. DOI: 10.1190/1.1443158.
Li, M., Druskin, V., Abubakar, A. and Habashy, T. M. A 2.5D finite-difference algo- rithm for elastic wave modeling using near-optimal quadratures, Geophysics, 8LT155- T162, 2016. DOI: 10.1190/geo2015-0550.1.
Novais, A. and Santos, L. T. 2.5D finite-difference solution of the acoustic wave equation, Geophysical Prospecting, 53:523-531, 2005. DOI: 10.1111/j.l365- 2478.2005.00488.x.
Ortega, F. G., Bassrei, A., Gomes, E. N. S. and de Oliveira, A. G. Non-hyperbolic velocity analysis of seismic data from Jequitinhonha Basin, Northeastern Brazil, An. Acad. Bras. Ciênc., 92(1):1-14, 2020. DOI: 10.1590/0001-3765202020180619.
Silva Neto, F. A., Costa, J. C., Schleicher, J. and Novais, A. 2.5D reverse-time migration, Geophysics, 76:S143-S149, 2011. DOI: 10.1190/1.3571272.
Sinclair, C., Greenhalgh, S. and Zhou, B. 2.5D modelling of elastic waves in trans- versely isotropic media using the spectral element method, Exploration Geophysics, 38:225-234, 2007. DOI: 10.1071/EG07025.
Thomsen, L. Weak elastic anisotropy, Geophysics, 51:1954-1996, 1986. DOI: 10.1190/1.1442051.
Wang, Z. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data, Geophysics, 67:1423-1440, 2002. DOI: 10.1190/1.1512743.
Williamson, P. R. and Pratt, R. G. A criticai review of acoustic wave modeling procedures in 2.5 dimensions, Geophysics, 60:591-595, 1995. DOI: 10.1190/1.1443798.
Zhou, B., Greenhalgh, S. and Greenhalgh, M. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method, Geophysical Journal International, 188:223-238, 2012. DOI: 10.1093/gji/ggx273.
Zhao, J., Huang, X., Liu, W., Zhao, W., Song, J., Xiong, B. and Wang, Z. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method, Geophysical Journal International, 211:164-187, 2017. DOI: 10.1111/j.l365- 246X.2011.05246.x.